一元五次方程在线计算题
2024-11-10 09:54 - 立有生活网
求解一元五次方程,各种方法均可,只要算得出
论证阿贝尔定理的错误
一元五次方程在线计算题
一元五次方程在线计算题
一元五次或更高次的一元方程没有一般的代数求根公式存在,被数学史上称之为阿贝尔定理,可惜原来是一个错误定理。下面让我来论证他的错误性。
为了让诸位更清楚我的论证过程 首先我把我的大致论证思路作一个简单介绍。我是这样想的,能不能找出一条方程求根公式的推导规律呢?结果发现完全可能,原来有二个没有被人类认识的数学新定理可以帮我们的忙。一个是同解方程判别定理。这个定理的大意是:任意二个一元高次方程,要知道它们是否互为同解方程,都可通过二个方程的系数关系来判别。判别式可通过韦达定理推算出来。判别式等于零,它们必互为同解方程。否则必不是同解方程。
第二个是公解方程式必可求定理。大意是:二个互为同解的一元高次方程,一定可推导出它们的公解方程式。后来,我就想如何利用二个数学新定理应用到一元高次方程求根公式的推导上来。结果我们把方程求根问题转移到求另一同解方程的系数问题。而另一同解方程系数有二个或二个以上,只要围绕判别式等于零的函数关系,对另一方程系数取值,都可得到和原方程有同解的方程。为使待求的同解方程的所有系数都可求出,我试图将其中一个系数通过配方的办法配成在一个括号里,那么,要达到这个目的其它系数该取什何值呢,结果解一个降了次的方程式。而配在一个括号里的那个系数可通过已求出的系数,方程移项开方的办法求出。那么同解方程就算出来了。再根据定理公解方程式必求定理算出那个相同的解。
如何推出验证二方程是否为同解方程的判别式来呢,我是这样做的,设其中一个方程的所有根分别为未知数X1,X2,X3等等把这些未知根分别代入到另一方程等式左边,每个未知根代入的情况当成一个因式,各因式相乘再展开,展开后,把它们按阿贝尔族形式的分类排列,再通过韦达定理根与系数的关系,将未知根X1,X2,X3等等全部换算成方程的系数已知数,这样系数组成的判别式就出来了,判别式等于零时,二个方程必是同解方程。否则必不是同解方程。顺便说明一下,利用判别定理还可以对高次方程组进行快速消元。
那么第二个定理是如何推导出来的呢,我们知道二个方程之间有几种如下情况:一种是二个一元方程之间公共着多个解,即一个方程的所有解,完全存在在另一个方程中,这种情况其实就是一个方程的左边能完全整除另一方程左边。二种是一个方程和另一方程有多个或一个相同的解,但不完全含另一方程的所有解。这种情况其实就是一个方程左边不能完全整除另一方程左边,它必出现余式,而余式不是以常数出现,如果把余式写成等于零的方程,则余式等于零的方程必含有二个方程公共相同根存在,这是因为较高次方程的左边,均可化成二部分,即可整除另一方程左边的部分和剩下不可以再除的余式部分,而可整除部分用另一方程任意一根代入都是零,而余式部分却不同,它用二方程之间的任意一个同解根代入必为零,否则二个方程不存在同解,因此,余式等于零的方程中,含有二个方程的所有公共根,而此方程方次,比另一方程至少要低。第三种就是二个方程没有同解。没有同解的方程,对我们研究推导公式,无任何邦助,不再讨论。而种情况,我们无法降次求解,我们需要的是第二种情况。如果第二种情况下,余式等于零的方程中除含二方程同解根之外还含杂根,我们还可以消除杂根,具体方法是,把余式等于零的方程变成次项系数变成1的形式,而先前二个方程中方次较低的方程左边又可以化成二部分,一部分是能整除变更后的余式方程左边,及不可再除的余式,同理,不可再除的余式取为零,变成方程式,它同样含所有同解根的,情况同前类似,以此类推,一直可推出不再含杂根的公解方程式。
因为有二个新定理可以利用,利用判别定理,我们就可以围绕判别式等于零来求另一个和原方程有同解的方程的系数,只要另一方程在通常情况下,不含原方程所有的解,则根据公解方程式必可求定理,得出一个降了次的方程式。一元三次方程和一元四次方程求根公式推导过程较简单,只要推导出它们分别与一元二次方程有同解的方程来,再通过公解方程的求法,便求出求根公式,一元五次方程要复杂很多,涉及如何将多元方程组利用多余的变量的设置化成特殊高次方程组的过程,思考这个问题我花了五年时间终于在2004年找到规律,下面是推导一元五次方程求根公式的说明。
同上理,我只要找到一个和一元五次方程有同解的一元高次方程,且这个高次方程通常情况下不包含一元五次方程所有根在内,根据公解方程必可求定理,我们就可以得出一个低于五次方的一元方程。我们设有一个一元十一次方程和这个一元五次方程是同解方程。因此把求方程根的问题转到求另一方程系数问题,二个方程分别必可写成次方系数均为1的基本形式。而从高至低方程系数均用字母表示,先推导出二个方程有同解的判别式,推导过程如下;
用一元五次方程的五个未知根X1,X2,X3,X4,X5分别代入一元十一次方程左边,各根代入的情况作一个因式,共五个因式相乘,展开,按阿贝尔族的排列形式,根据韦达定理,根与系数的等量代换,所有按阿贝尔族排列的都可换算成一元五次方程的系数来表示,因此可推算出判别二方程是否为同解方程的系数组成的判别式。
在推导判别式时,一元十一次方程的系数,在每个因式中都是以一次方形式出现,五个因式相乘展开的结果必是十一元五次代数式,而X1,X2,X3,X4,X5都可变成用一元五次方程的系数来表示,围绕判别式等于零这个中心来对一元十一次方程的系数取值,都可得到与一元五次方程有同解的方程。维绕判别式等于零组成的方程来求一元十一次方程的所有系数,我可以这样做,在判别式等于零方程里,从十一个系数中选择一个系数配成特殊可解的一元五次方程形式,由因为我们有其他十个系数的值可以任我来设值,要配成特殊一元五次方形式应当没有多大问题,那么啥样的一元五次方程可以用之前人类已掌握的知识解决呢?一种是未知数全在一个括号5次方内的,第二种为系数之间有另存在一种特殊关系的,第三种是能参照一元三次方程公式创始人做法的特殊一元五次方程,通过多次尝试,淘汰前二种可能,再试一试能否变成那种方程。有人会问那是一种怎样的方程呢?在此我必须要介绍一下那种特殊方程,即方程的五次方项系数为1,方程四次方项和二次方项的系数是0,方程立方项系数的平方是-5倍于一次方项系数,这种特殊方程可沿用推导一元三次方公式的类似办法解决。在此顺便说明一下,有一种特殊的一元七次方程也可以利用此种办法推导公式暂且不论。由于版面不支持上标下标,会把上标下标与横标相混淆,请大家花些时间自已去验证一下。
要把一元五次方程中四次方项的系数变成0 ,大家都知道可参照一元二次方程配方的办法变成新方程,新方程未知数中含有原方程未知数成份,并不需要对其他十个系数进行另外设值。变成新方程后,如果再将新方程其它系数特殊化就要通过原来十个系数的设值了,首先把新方程的平方项系数设值成零,其实,就是含上术十个系数的三次方函数关系式,而把新方程四次方项系数的平方设成等于新方程一次方系数的-5倍,其实就是关于含上术十个系数的四次方函数关系式,这二个关系式组成十元四次二式方程组,如何利用多余的元素设值变成特殊的二元四次二式方程组呢?仍然是利用对多余元素设值达到我们配成立方的办法,我们的任务就是把上面方程组中个关系式变成只含二个元素代数式的括号立方减系数乘只含一个元素的代数式括号立方等于零的方程式。做法如下:
从上面多元方程组中的个关系式中选择其中一个元素作为配方对象,并利用其他元素的设值,帮助这个元素能配成在一个括号立方之内,同上理,要把平方项系数配成零,并不需要对其他多余元素另外设值,也只是变成了新元素的方程,我们只要把新元素方程的一次方系数设成零的函数,其实就是另9个元素的二次函数关系式,这样设好后,有一个元素就全配方在一个括号立方里了,括号外面为另9个元素三次方多项式了,此时我们不必急于另选一个元素配在一个括号立方之内。我们还有任务没完成,前面我们把新元素方程一次方项系数设成零时,其实仍是多元二次函数形式,用其它元素来表示其中某元素时必含根式,因此还须降次,降次方法如下:
因为是二次函数,我们选择其中一个元素全配方在括号平方内时,并不需要对其他元素另外设值就能办到,而括号外的我们又选择另一个也同样又配在另一括号平方之内,如此一个一个地选择元,这样配成9个括号和一个常数项,共有10项了,如果我们在此函数下再选前8个括号中每二个括号之和或设值为零,则一个括号与常数项之和必为零,通过一个号与常数项之和等于零的方程式,可求出一个元素值来,把求出的元素代入方程组中,这样就变成特殊的 八元二次四式方程组,而方程组中每一式都可移项开方变成多元一次方程式。所以方程组又变成八元一次四式方程组了,如果把八元中四个元素暂当成已知数,来求另四个元素,则另四个元素中每个元素必可用那四个元素来表示,所表示的情况,连同已直接求出的那个元素代入原先已配好的立方括号内去,只合并同类项而不展开。立方括号外也同样代入,但要展开和合并同类项,因此立方括号内含五个元素,括号外只含四个元素的代数式了,现在可以对括号外的代数式选中一个元素全配方在一个括号立方之内了,为了把那个选择好的元素的立方项系数变成1,整个方程同除以那个系数就行,同上理要把它配成缺平方项的形式,不需要对其他元素另外设值,只是成了新元素形式。当把新元素一次方项的系数设成零,则又一个元素全配成在另一个立方括号内了,,设值的结果是三元二次函数式了,用上面同样的方法,可将这个三元二次函数配成三个括号平方和或及一个常数项,把前二个括号平方和或设成等于零,则后一个括号与常数之和或必是零。通过后一个括号平方与常数组成的方程又可解出一个元素值。代入前二个括号平方和或等于零的方程中,移项方,变成二元一次方程,通过这个二元一次方程,其中一个元素值可以用另一个元素来表示了,把这种表示方式连同已算出的元素值代入个配成的括号立方之内变成只含三个元素的括号立方,代入第二个配好的括号立方内变成只含二个元素的括号立方,代入括号立方之外的函数中则变成一个元素的代数形式,我们设值括号外的代数式等于零,则解一个一元三次方程便可求出,求出后代入二个先后配好的括号立方之内,则变成前一括号立方内只含二个元素,后一个括号立方只含一个元素,通过移项开立方变成只含二个元素的一次方方程式。这样,原先的十元四次二式方程组中的第1式就变成了二元一次方程式了,而多元方程组中第2式的消元过程,应当是和第1式消元过程是同步进行的,第二式应当变成二元四次方程式了。因为这样的方程组可以通过人类现有的知识解出。把十个系数的求出,代入到前面配成的多元五次方程,得出特殊的一元五次方程,求出一个系数,此时已算出和原题一元五次方程有同解的一元十一次方程了。有人问,这样算出的方程会不会包含一元五次方程的所有解呢,现在我们可以进行分析一下,用一元十一次方程左式去整除一元五次方程左式后,余式中未知数的系数则都是由十一个系数的一次方代数式出现,而这些系数只有一个系数的求出要解特殊五次方方程,并要开5次方根,这个5次方根通常无法被其它元素所消除,因此说通常情况下二方程之间不可能包含有5个相同的解。根据公解方程推导定理,一般情况下能推导出低于五次方的一元方程出来。所以说阿贝尔定理是错误的。
利用新定理,把多元高次方程组快速变成一元方程
如何快速把高次方程组变成一元高次方程式呢?这是民间科学研究的重大成就,就是利用民间研究出的同解方程判别定理,直接导入快速消元,这里必须要介绍一下同解方程判别定理。
什么是同解方程判别定理呢?
指任意二个一元高次方程之间,如果它俩系数之间存在一个固定函数关系,它们必为同解方程。这个固定函数关系可通过韦达定理推算出来,推导过程说明如下:
如何推出验证二方程是否为同解方程的判别式来呢,我是这样做的,设其中一个方程的所有根分别为未知数X1,X2,X3等等把这些未知根分别代入到另一方程等式左边,每个未知根代入的情况当成一个因式,各因式相乘再展开,展开后,把它们按阿贝尔族形式的分类排列,再通过韦达定理根与系数的关系,将未知根X1,X2,X3等等全部换算成方程的系数已知数,这样系数组成的判别式就出来了,判别式等于零时,二个方程必是同解方程。否则必不是同解方程。
如何应用这个定理把多元方程组快速消成一元方程呢?
我们可以通过韦达定理先把各类验证二种一元方程式有同解的代数判别式都推算出,列成一系列性的词典型代数式,供方程组快速消元用,在方程组各式中每式都选同一个未知数,把每一式都看成是这个未知数的有同解的一元方程,而其他未知数都看成是那个未知数的系数,这样每二式都写出判别式等于零的方程,而判别式等于零的方程,自然不再含选中的未知数,达到消元目的。如此继续一直用此法做下去,变成一元高次方程
一元5次方程解法
一元五次方程被证明没有根式解
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。
用根式求解四次或四次以下方程的问题在16世纪已获得解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。
1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。
随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。
阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。
伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。
对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1)
设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。
伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。
一元五次方程怎么解
一般高于四次的方程没有代数解---的阿尔贝—鲁菲尼定理
三次倒是有一个,可也很复杂。一般可能不是数学系大学生都不会知道
对于初一,应该只学一次方程把,解5次方程,通常要是一些特殊情况,这要具体分析,如可以因式分解。
还有一些多元的方程,要解的话也有些特殊规律
举个例子,当然不是5次方程
比如不小于0,平方不小于0,如果都是平方啦,啦相加等于0,那就要每项都为0了
伽罗瓦证明,一元五次以上的方程没有求根公式
如果方程能够分解因式可以求得解。否则只能通过二分法等方法求近似实根。
有两位数学家已经证明了一元五次方程没有公式解法,所以只能降次了~~~
什么是一元五次方程 给一条一元五次方题,并给我解释,
x^(5)-5x^(4)+20x^(2)-5x-3=0
经天珩公式检验,q=p^(2)-5r=0,δ<0,应有五个不同实数根.
荨嫞 数学 2014-10-24
x^5+4x=3462
像这样的
一元五次方程
一元五次方程:一元五次方程是指含有一个未知数,而未知数次数为5,通常叫一元高次方程。
如:X^5-1=0,它区别于五元一次方程。解这类方程通常的方法都是利用因式分解降次,从而求解。方程的“元”是指未知数的个数,“次”则指未知数的次数(幂)。
含义
只含有一个未知数(即“元”),并且未知数的次数为5(即“次”)的整式方程叫做一元五次方程(英文名:QuinticEquation)。一元五次方程的标准形式(即所有一元五次方程经整理都能得到的形式)是ax5+bx4+cx3+dx2+ex+f=0(a,b,c,d,e,f为常数,x为未知数,且a≠0)。
沃尔沃XC40纯电版_沃尔沃xc40纯电版怎么样
沃尔沃xc40纯电版,等红绿灯时应该挂什么档 而对于追求“一次付费终身无忧”的购车用户来说,可以选择升级至包含“终身免费充电”等权益在内的“尊享权益包”。此次对于包的调整,让消费者···
斗战神龙女飞升技能 斗战神龙女刷图最强系
全民斗战神龙女和灵猴职业技能属性对比分析 全民斗战神 龙女和灵猴哪个职业更好?很多小伙伴都不知道选龙女还是灵猴好,接下来就和我一起来看看吧。 斗战神龙女飞升技能 斗战神龙女刷图最···
海贼王漫画753 海贼王漫画全集
海贼王的713集是漫画多少集 我想买海贼王漫画书,买哪个版本的? 海贼王的713集对应的漫画集数是第800话。这部作品讲述了年轻人蒙奇·D·路飞成为海贼王的故事,充满了冒险和。由于动画和漫画···