概率高中数学知识点_概率高中数学知识点视频

2025-04-02 23:37 - 立有生活网

高中概率

(1)必然:在条件S下,一定会发生的,叫相对于条件S的必然;

把这两本“不同的”数学书当做同一本数学3.1.1 —3.1.2随机的概率及概率的意义书。。。反正都是数学书

概率高中数学知识点_概率高中数学知识点视频概率高中数学知识点_概率高中数学知识点视频


概率高中数学知识点_概率高中数学知识点视频


二、函数

所以是2/3

两本数学书不相邻的概率为P22/P33=2/6=1/3

所以相邻的概率=1-不相邻的概率=2/3为所求

是不是2/3

高中数学(概率)

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

111,112,113,114,115,116

一个程序框图包括以下几部分:表示相应作的程序框;带箭头的流程线;程序框外必要文字说明。

222,223,224,225,226

333,334,335,336

444,445①求出总的基本数;,446

555,556

666

共有以上21种结果。

能构成三角形的:111,222,223,333,334,335,444,445,446,555,556,666

所以,构成三角形的概率是:P=12/21=4/7

钝角三角形:223,335,446

构成钝角三角形的概率:P=3/21=1/7

郭敦顒回答:

(1)甲先抽到选择题的概率是6/10,乙抽到判断题的概率是4/9

甲先抽到选择题乙抽到判断题的概率是:( 6/10)4/9=4/15。

(2)甲、乙都抽到选择题的概率是:( 6/10)5/9=1/3;

甲、乙都抽到判断题的概率是:( 4/10)3/9=2/15。

参考

高中数学必修三知识点

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

一个人的知识面是一个圆圈,知识储备越多,圆圈越大,接触到的面积便越广阔,便能掌握和窥视更多的机会。下面是由我为大家整理的高中数学必修三知识点,仅供参考,欢迎大家阅读。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

高中数学必修三知识点1

算法初步

1:算法的概念

(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

(2)算法的特点:

有限性:一个算法的步骤序列是有限的,必须在有限作之后停止,不能是无限的.

确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

2: 程序框图

(1)程序框图基本概念:

程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

构成程序框的图形符号及其作用

程序框

名称

起止框

表示一个算法的起始和结束,是任何流程图不可少的。

输入、输出框

表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。

赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

判断框

判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

算法结构。

(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

高中数 高一数学知识点总结学必修三知识点2

统计

2.1.1简单随机抽样

1.总体和样本

2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全,彼此间无一定的关联性和排斥性。简单随机抽样是 其它 各种抽样形式的基础。通常只是在总体单位之间异程度较小和数目较少时,才采用这种 方法 。

3.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误范围;③概率保证程度。

4.抽签法:

(1)给调查对象群体中的每一个对象编号;

(2)准备抽签的工具,实施抽签

(3)对样本中的每一个个体进行测量或调查

例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:

例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.1.3分层抽样

1.分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。

两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征

1、本均值:

2、样本标准:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏。在随机抽样中,这种偏是不可避免的。

虽然我们用样本数据得到的分布、均值和标准并不是总体的真正的分布、均值和标准,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

(3)一组数据中的值和最小值对标准的影响,区间 的应用;

“去掉一个分,去掉一个分”中的科学道理

2.3.2两个变量的线性相关

1、概念:

(2)回归系数

2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(3)回归直线不要外延。

高中数学必修三知识点3

概 率

1、基本概念:

(4)随机:在条件S下可能发生也可能不发生的,叫相对于条件S的随机;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一A是否出现,称n次试验中A出现的次数nA为A出现的频数;称A出现的比例fn(A)=为A出现的概率:对于给定的随机A,如果随着试验次数的增加,A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为A的概率。

(6)频率与概率的区别与联系:随机的频率,指此发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机的概率,概率从数量上反映了随机发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个的概率

3.1.3概率的基本性质

1、基本概念:

(1)的包含、并、交、相等

(2)若A∩B为不可能,即A∩B=ф,那么称A与B互斥;

(4)当A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若A与B为对立,则A∪B为必然,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然概率为1,不可能概率为0,因此0≤P(A)≤1;

2)当A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若A与B为对立,则A∪B为必然,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥与对立的区别与联系,互斥是指A与B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)A发生且B不发生;(2)A不发生且B发生;(3)A与B同时不发生,而对立是指A与B有且一个发生,其包括两种情形;(1)A发生B不发生;(2)B发生A不发生,对立互斥的特殊情形。

3.2.1 —3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

②求出A所包含的基本数,然后利用公式P(A)=

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个发生的概率只与构成该区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:

P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本)有无限多个;2)每个基本出现的可能性相等。

高中数学必修三知识点相关 文章 :

★ 高中数学必修三重点知识点复习

★ 高一数学必修3各章知识点总结

★ 高中数学必修三目录人教版

★ 高中数学必修三公式汇总

★ 高中数学必修3随机抽样知识点

★ 高三数学必修三知识点总复习资料

★ 高中必修三数学知识点

★ 高二数学必修三第三章知识点总结

★ 北师大高中数学必修3知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学知识点必修一总结大全

不等式在选择题解答题中都会出现,其中选择题常考指数、对数等一般的数的大小比较,这样的题通过运用函数的知识很快能解决,解答题中主要是关于不等式的证明,这样的题难度就较大,如13年上半年就考了1道定义数列不等式的证明。

很多同学在复习高中数学必修一时,复习效率不高,因为还没有系统的知识总结。下面是由我为大家整理的“高中数学知识点必修一总结大全”,仅供参考,欢迎大家阅读本文。

int i;

一、、简易逻辑

1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式

1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式。

七、直线和圆的方程

1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率

1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验。

必修一函数重点知识整理

1. 函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x) ;

(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2. 复合函数的有关问题

(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

5.方程k=f(x)有解 k∈D(D为f(x)的值域);

6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+);

(2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符号由口诀“同正异负”记忆;

8. 判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12. 依据单调性,利用一次函数在区间上的保⑴与简易逻辑:的概念与运算、简易逻辑、充要条件号性可解决求一类参数的范围问题

13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:高中数学复习方法

1、把盖住看例题

例题不能带着去看,不然会认为自己就是这么,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

2、研究每题都考什么

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

3、错一次反思一次

每次业及或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

学生若能将每次或练习中出现的错误记录下来分析,并尽力保证在下次时不发生同样错误,那么以后人生中最重要的也就能避免犯错了.

4、分析试卷总结经验

每次结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高中数学有关概率

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

分2种,一是第三组没有抽到,组3个第二组2个3乘以2有6种情况,二是第三组有抽到,再在前面5个随便抽一个,有5种情况

2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正的人,是会把知识简化,把书本读薄的。先学学你能思考到的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

加起来有11种情况,希望能看懂,可以追问:)

您出的题目比较乱,总的来说,如果您孩子是文科的话,题目应该不会太难,只要把课本中的知识点理解了,做下课本上的例题就行了,应该可以解决一般性问题。多动下脑子就行,不要认为难而害怕,一点点来就行。可以说即使没念过书,这些问题也可以解决的。不需要担心学不会,只要你敢去学。

首先利用组合排列,三组的任选出两组的组合是C(32)(c的下标3上标2),

再用是C(32)乘上组3种情况,第二组两种情况;得是C(32)32=332=18;

然后是各组可以组成两个人的只有一二组,

将上面三种情况相加方法种数为C(32)32+C(32)+1=22

组有3人,第二组有2人,第三组有1人,现在要从其中任抽出两人,共有多少种情况/

现有总人数3+2+1=6人,从中任抽取两人共有

C(2,6)=(6×5)÷(2×1)=15

建议你去百度看看排列组合的相关定义及公式

具体组合如下

12、13、23、ab、1x、2x、3x、ax、bx、1a、1b、2a、2b、3a、3b

问题不够清晰,是从三个组里面分别(2)不可能:在条件S下,一定不会发生的,叫相对于条件S的不可能;抽还是怎么样?x是一个人还是x个人?

呵呵

高中数学必修三知识点

在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体 的有关性质,一般从总体中随机抽取一部分: 研究,我们称它为样本.其中个体的个数称为样本容量.

一个人的知识面是一个圆圈,知识储备越多,圆圈越大,接触到的面积便越广阔,便能掌握和窥视更多的机会。下面是由我为大家整理的高中数学必修三知识点,仅供参考,欢迎大家阅读。

高中数学必修三知识点1

算法初步

1:算法的概念

(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

(2)算法的特点:

有限性:一个算法的步骤序列是有限的,必须在有限作之后停止,不能是无限的.

确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法.

普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.

2: 程序框图

(1)程序框图基本概念:

程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

构成程序框的图形符号及其作用

程序框

名称

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

起止框

表示一个算法的起始和结束,是任何流程图不可少的。

输入、输出框

表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。

赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

判断框

判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

算法结构。

(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

高中数学必修三知识点2

统计

2.1.1简单随机抽样

1.总体和样本

2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全,彼此间无一定的关联性和排斥性。简单随机抽样是 其它 各种抽样形式的基础。通常只是在总体单位之间异程度较小和数目较少时,才采用这种 方法 。

3.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误范围;③概率保证程度。

4.抽签法:

(1)给调查对象群体中的每一个对象编号;

(2)准备抽签的工具,实施抽签

(3)对样本中的每一个个体进行测量或调查

例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:

例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.1.3分层抽样

1.分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。

两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征

1、本均值:

2、样本标准:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏。在随机抽样中,这种偏是不可避免的。

虽然我们用样本数据得到的分布、均值和标准并不是总体的真正的分布、均值和标准,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

(3)一组数据中的值和最小值对标准的影响,区间 的应用;

“去掉一个分,去掉一个分”中的科学道理

2.3.2两个变量的线性相关

1、概念:

(2)回归系数

2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(3)回归直线不要外延。

高中数学必修三知识点3

概 率

1、基本概念:

(4)随机:在条件S下可能发生也可能不发生的,叫相对于条件S的随机;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一A是否出现,称n次试验中A出现的次数nA为A出现的频数;称A出现的比例fn(A)=为A出现的概率:对于给定的随机A,如果随着试验次数的增加,A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为A的概率。

(6)频率与概率的区别与联系:随机的频率,指此发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机的概率,概率从数量上反映了随机发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个的概率

3.1.3概率的基本性质

1、基本概念:

(1)的包含、并、交、相等

(2)若A∩B为不可能,即A∩B=ф,那么称A与B互斥;

(4)当A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若A与B为对立,则A∪B为必然,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然概率为1,不可能概率为0,因此0≤P(A)≤1;

2)当A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若A与B为对立,则A∪B为必然,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥与对立的区别与联系,互斥是指A与B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)A发生且B不发生;(2)A不发生且B发生;(3)A与B同时不发生,而对立是指A与B有且一个发生,其包括两种情形;(1)A发生B不发生;(2)B发生A不发生,对立互斥的特殊情形。

3.2.1 —3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

②求出A所包含的基本数,然后利用公式P(A)=

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个发生的概率只与构成该区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:

P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本)有无限多个;2)每个基本出现的可能性相等。

高中数学必修三知识点相关 文章 :

★ 高中数学必修三重点知识点复习

★ 高一数学必修3各章知识点总结

★ 高中数学必修三目录人教版

★ 高中数学必修三公式汇总

★ 高中数学必修3随机抽样知识点

★ 高三数学必修三知识点总复习资料

★ 高中必修三数学知识点

★ 高二数学必修三第三章知识点总结

★ 北师大高中数学必修3知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学必修二知识归纳总结

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

很多同学在复习高中数学必修二的知识点时,因为没有做过系统的总结,导致复习效率不高。下面是由我为大家整理的“高中数学必修二知识归纳总结”,仅供参考,欢迎大家阅读本文。

(一)平行直线系

数学必修二的知识点总结

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(3)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(4)直线系方程:即具有某一共同性质的直线

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

(6)两直线平行与垂直

(7)两条直线的交点

相交

交点坐标即方程组的一组解。

方程组无解;方程组有无数解与重合

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线_公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:

①它是空间内确定平面的依据

②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

数学必修二的知识点总结

一、直线与圆:

1、直线的倾斜角的范围是

在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

4、直线与直线的位置关系:

5、点到直线的距离公式;

两条平行线与的距离是

6、圆的标准方程:.⑵圆的一般方程:

注意能将标准方程化为一般方程

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

3、模的计算:|a|=.算模可以先算向量的平方

4、向量的运算过程中完全平方公式等照样适用:

三、直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

数学必修二的知识点总结

一、随机

主要掌握好(三四五)

(1)的三种运算:并(和)、交(积)、;注意A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)的五种关系:包含、相等、互斥(互不相容)、对立、相互。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为的概率;(2)古典定义:要求样本空间只有有限个基本,每个基本出现的可能性相等,则A所含基本个数与样本空间所含基本个数的比称为的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2):P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式.

拓展阅读:高一数学学习方法

先看笔记后做作业。

有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与学生的区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

做题之后加强反思。

学生一定要明确,现在正坐着的题,一定不是的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

高中数学 概率

功能

这样说把:

⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

因为抽一件产品,要么是次品要么是"",

抽到次品的概率为: P=0.04,

那么抽到“”的概率为 :1-p=0.96.

在本题中,(1)回归直线方程设我们抽n只,

全为的概率为: 0.96^n,

为次品的概率就为1-0.96^n。

(0.96^n表示0.96的n次方)

解不能式: 1-0.96^n>=0.95;得出 n至少为79;

参考c语言代码:#include"stdio.h"

#include"math.h"

void main(){

double a=1;

for(i=1;i<=79;i++)

a=a0.96;

printf("%lf",a);

}

(1-0.04)n次幂<1-0.95

解得为A

a

高中数学知识点汇总

(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准变为原来的k倍高中数学知识点汇总

⑶数列:数列的有关概念、等数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算①异面直线定义:不同在任何一个平面内的两条直线、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高中必背知识点数学

组组合排列C(32)=3【解释下即12,23,13三种】;第二组明显1个;

1高中数学必备知识点有哪些

(3)确定:必然和不可能统称为相对于条件S的确定;

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

(3)若A∩B为不可能,A∪B为必然,那么称A与B互为对立;必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

相关考点:

⑶数列:数列的有关概念、等数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

2学好高中数学的窍门

掌握每一个公式定理

做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。

做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。

进行专题训练提高数学成绩

1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。

3如何学好高中数学

1. 先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与学生的区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

2. 做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

3. 主动复习总结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

下面说一说几个高中必背知识点,可以作为参考。

1、数列

数列这一模块常考特殊的数列,而不是简单的等等比数列。所以特殊数列的通项公式以及前n项和的求和方法是复习的重点。

如13年下半年考了1道数列的选择题,已知一元二次形式的数列通项公式,求该数列的最小项。还有15年下半年也考了1道选择题,判定两个特殊数列的不等关系。

2、不等式

3、矩阵的相关概念及计算

矩阵的考察频率非常高,几乎年年考。具体的考点是矩阵的简单运算、矩阵变换下的曲线方程、正交矩阵的判定、矩阵的特征向量特征值、矩阵的变换等。

4、线性方程组

线性方程组是高等数学的一大重点内容,常考齐次,非齐次线性方程组的解,以解答题的形式出现。如,12年下半年考了1道求齐次线性方程组的解,并求方程组解的维数;15年下半年考了1道非齐次线性方程组,要求证明方程解存在时,几个向量线性无关。

5、正态分布

正态分布的考点较少,考生重点复习满足条件概率的计算。

6、导函数的应用

导函数的应用常考导函数的几何意义、函数的极值的计算、函数的切线方程、高次函数零点等。如13年下半年考了1道 的几何意义题、12年下半年第1道选择题,让求三次函数图像与x轴交点的个数。

7、函数的连续性、可导性

函数的连续及可导性常以选择题形式出现,考题的难度不大,会判定函数的连续性和可导性即可。如12年考的就是分段函数在分界点处的连续性和可导性。

8、极限

这一知识点常考数列和函数的极限计算,如13年上半年选择题第1题就是考数列和函数的极限,16年上半年考的是求函数的极限。

9、定积分

定积分常与函数综合在一起考察,具体考的是定积分函数的导函数,以及定积分的几何意义。如13年上半年1道选择题是求定积分函数导函数零点的个数;又如13年上半年解答题考的是利用定积分求椭圆所围成图形的面积。

10、中值定理

罗尔中值定理、拉格朗日中值定理的证明考察的频率还是相对比较高的,如13年和15年下半年均考到了拉格朗日中值定理的证明,并简述其与中学教学内容的关系。

11、曲线、曲面方程

空间曲面、曲线方程考察的频率非常高,常考切平面、切线方程、以及曲面、曲线方程,在选择题,解答题都会出现。如12年下半年考了曲面的切平面方程;14年下半年考了根据参数方程写曲线的一般方程;13年上半年和15年下半年均考了旋转曲面的方程;16年上半年考了根据方程确定的二次曲面类型。

12、逻辑关系

逻辑关系主要就是考四大命题、四种条件关系,而且只出现在选择题当中,所以难度不大,要特别注意否命题的判定。如12年下半年考了命题的否定,14年下半年考了充要条件。

13、空间线面、面面关系

空间线面、面面关系也是常考的考点,其中空间线面关系就考过,如14年下半年就考了空间直线与平面位置关系,并要求线面夹角。

14、概率

概率题在选择和解答题都会出现,不过这部分题难度不大,如目前考过简单的掷硬、摸球概率计算,解答题考过两个的关系的证明。如12年下半年就考了1道两的证明。

15、圆锥曲线

圆锥曲线中椭圆、双曲线、抛物线均考过。常考这些曲线围成一定图形的面积、曲线方程。如13年上半年考了2道,分别是双曲线方程的判断,以及抛物线的切线与x轴交点横坐标解析式。

16、无穷级数

无穷级数常以选择题形式考察,其中求函数级数的收敛区间是最常考的知识点。如15年下半年考了函数级数的收敛区间,16年上半年考了不收敛的函数级数。

教版高中数学必背知识点

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

相关考点:

⑶数列:数列的有关概念、等数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高中数学——关于概率的

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准不变

一共有8种情处理(2)回归分析前,先作出散点图;框况有

4 概率为1/4

3 1 概率为2(1/4)^2

2 2 概率为(1/4)^2

2 1 1概率为 3(1/4)^3

你用P=8/28

但忽略了在这个题目中

每种情况的概率是不同的,所以不能直接那样算

比如次就是4的概率为1/4,而四个一的概率就很小很小

会做就好。。。

芝麻分怎么快速提分 550分能开通花呗吗

芝麻信用596分怎么快速提升到600分? 3、达到700分,就可以方便申请新加坡等签证。 1、芝麻分提升的方法:在日常生活中养成良好的信用习惯,避免过度消费,按时偿还各类账单,及时缴纳水电煤···

勇士火箭比赛时间表格_勇士火箭比赛视频回放

勇士赛程表2023 2022-2023赛季NBA勇士队赛程如下: 勇士火箭比赛时间表格_勇士火箭比赛视频回放 勇士火箭比赛时间表格_勇士火箭比赛视频回放 2023-01-03-11:00:老鹰&勇士,141-143。 2023-01-05-11:00:活塞···

新婚夫妻游40国 新婚夫妇旅游

婚礼互动游戏 泸沽湖,因为泸沽湖的景色十分优美,自驾一圈十分有意境,其次周边还有很多小的景观。 心心相印 新婚夫妻游40国 新婚夫妇旅游 新婚夫妻游40国 新婚夫妇旅游 这个婚礼小游戏很适···