八年级上册数学复习 六年级上册数学学练优

2025-01-05 10:15 - 立有生活网

人教版八年级上册数学复习题13~15的1~5题

(提示:要考虑大水管的进水速度是小水管进水速度的多少倍)

复习题13

八年级上册数学复习 六年级上册数学学练优八年级上册数学复习 六年级上册数学学练优


八年级上册数学复习 六年级上册数学学练优


虽然知道,造成 高二数学 成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?一起来看看初二数学知识点归纳上册人教版,欢迎查阅!

(1)1.5±1.5(2)17±17(3)12/13±12/13(4)5 3±3(5)4/13,±4/13

>(6)2,10±10 1 2

2。 (1)4/5(2)-0.2(3)8(4)3 2

3。 (1)-7 / 13(2)-1(3)0.4(4)5/3

4。 (1)5(2)6(3)5

5。 (1)-9.711(2)0.755(3)235.000(4)324.000

1.Y = 100 +10×(0≤X≤36)中,x是一个整数,其特征在于100,10是常数,X和Y是变量。 x是变量,y是x的函数。

2。直线y = 2×6和x轴相交于(-3,0),(0,6)和y轴相交。

①当b>0时,直线与y轴的正半轴相交;当x = -5,代以为y = 2×6 = 2×(-5)6 = -4,∴(-5,-4)的直线上。

当x = -7,代Y = 2X +6 = 2×(-7)+6 = -8≠20∴(-7,20)是不是在一条直线上。

当x = -7 / 2,代以为y = 2×6 = 2×(-7 / 2)6 = -1,∴(-7 / 2,1)是不是在一条直线上。

当x = 2/3,被取代的成y = 2×6 = 2×(2/3)6 = 22/3 =(1/3),∴(2/3,7(1 / 3))中的直线。

3(1),二,四,减少了;(2),三,四,增加。

4。 (1)设Y = KX,∵当x = 5,y = 6时,K = 6/5∴y = 6/5x。

(2)的点(3,6)和点(1/2,-1 / 2)Y = KX + b的获得,

{3000 + = 6,将溶液{代= 13/5∴y = 13/5-9/5。

{1/2K + = -1 / 2。 {B = -9 / 5。

5。 (1)×5(2)X <5

复习题15

(1)4个7个广场Y九方(2)4A 2 +4 AB-3B 2(3)5倍的第四权力5X 2

(4)4X 2 +4 XY + Y 2-4X-2Y +1(5)3599.96(6)39204

2。 (1)2(2)2/3b -4/9a 2(3)2a的2×3/2(4)7/8y-xz(5)432(6)1055

3。 (1)(5×4 y)的(5×-4Y)(2)2×(AB)(3)(α-2b)的2(4)(3×-1612 2)2

4。 (1)29(2)8倍至4倍(3)-γ2-6yz 4 Z 2(4)2/3xy-2 / 3

5。 (1)X(X +3)(x-3)(2)(4倍2 +1)(2X +1)(2X-1)(3)-Y(3X-y)2纯手工望采纳 />(4)(式2a + b)2名。

[]

要?

还是过程也要?

我实在是想帮你,可我才上初一呀

八年级上册数学期末考试考点知识点整理

(3)由公式变形,方求t.解答:解:(1)由勾股定理,得斜边= = ;

八年级上册数学期末考试考点知识点整理1

第十二章 平面直角坐标系小结

3.两组对角分别相等的四边形是平行四边形;平面内点的坐标特征

1.各象限内点P(a,b)的坐标特征:

象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0.(说明:一.三象限,横.纵坐标符号相同,即ab>0;二.四象限,横.纵坐标符号相反即ab<0。)

2.坐标轴上点P(a,b)的坐标特征:

x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0

(说明:若P(a,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a,b)在坐标轴上。)

3.两坐标轴夹角平分线上点P(a,b)的坐标特征:一.三象限:a=b;二.四象限:a=-b。

对称点的坐标特征

点P(a,b)关于x轴的对称点是(a,-b);

关于y轴的对称点是(-a,b);

关于原点的对称点是(-a,-b)

点到坐标轴的距离

点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣。

点的平移坐标变化规律

(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;

(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为右加左减,上加下减)

第十三章 一次函数

确定函数自变量的取值范围

1.自变量以整式形式出现,自变量的取值范围是全体实数;

2.自变量以分式形式出现,自变量的取值范围是使分母不为0的数;

3.自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;

自变量以奇次方根形式出现,自变量的取值范围是全体实数。

4.自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。

说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;

(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。

八年级上册数学期末考试考点知识6、符号相同的数可以先相加。点整理2

考点一:三角形

三角形中的考点分为三类:一类是一般的三角形,一类是等腰三角形,一类是等边三角形。

一般的三角形常考的是三角形的面积,周长相关的计算,以及三角形全等相关的证明。三角形的面积为1/2乘以底乘以高,三角形的周长为三个边长之和。证明三角形全等的方法:SSS(三个边对应相等的两个三角形全等),SAS(两边及其夹角对应相等的两个三角形全等),AAS(两个角以及其中一个角对应的边相等的两个三角形全等),ASA(两角及其夹边对应的两个三角形对应相等的两个三角形全等)。

等腰三角形:两个边长或者两个角相等的三角形为等腰三角形。等腰三角形底边上的高和中线还有角平分线三线是重合的,考试的时候,经常构造这个辅助线进行相关的证明。

等边三角形:三个边都相等的三角形为等边三角形,等边三角形的各个角都是60度,各个边长都相等。

考点二:多边形

多边形的内角和:180(n-2),n为多边形的变数。经常给出度数范围,求边长,常用的方法是设多边形的边数为n,列不等式,求出关于边数n的范围,取整数即可。如一个多边形的'内角和大于850度小于1000度,求多边形的边数。

列不等式:850<180(n-2)<1000,解的:85/18+2

多边形的对角线的个数:n(n-3)/2

考点三:轴对称

轴对称图像经常会结合全等进行相关的考核,主要是数形结合的题目,后续在模拟试题中会提到,你只要知道关于某条线能够完全重合的图形为轴对称图形即可,如等腰三角形,正方形等。

考点四:整式

整式必考的考点为代数式相关的求值,平时学生们都加以训练了,只要考试认真按照四则运算进行相关的求解即可,先化简,再代入值求解即可。

考点五:因式分解

因式分解是必考的内容之一,因式分解答题步骤我们来为大家总结一下:首先看式子中是否有公因数,有公因数的一定要提取公因数,然后,看是否能够利用平方公式或者完全平方公式,不能的话,考虑使用十字相乘的方法进行分解。具体的分解技巧见前面课程中提到的因式分解解题技巧。

考点六:分式

分式考点比较单一,首先是分式的计算,和整式是一样的方法,其次是分式方程解应用题,求解完应用题一定要代入原来的分式方程中进行验证,判断分母是否为0,即解方程结束,要加上一句话:经验证x等于某某数值为原分式方程的解。相关的解题注意事项,后续在期末试题中我们会给出详解的哦。

初二数学知识点归纳上册人教版

C.该地区的所有国有工业企业的生产经营情况

初二数学知识点 总结 归纳

k<0,图象经过第二、四象限

运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3.将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y7.分式的乘除法法则: .-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.作为结果,如果是分式则应该是最简分式.

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

初二数学复习提纲 方法

一、克服心理疲劳

,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;

第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;

第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。

二、战胜高原现象

复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出 学习方法 、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。

三、重视复习“错误”

如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。

四、把握心理特点搞好考前复习

实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。

1、课本不容忽视

对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。

2、错题本

相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,把题目弄懂、弄透,以免再犯同类错误。

初二数学全册复习提纲

第十一章 一次函数

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫函数(linear function)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

第十二章 数据的描述

我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

条形图:描述各组数据的个数。

复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

扇形图:描述各组频数的大小在总数中所占的百分比。

折线图:描述数据的变化趋势。

直方图:能够显示各组频数分布的情况;易于显示各组之间频数的别。

在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的称为组距。

求出各个小组两个端点的平均数,这些平均数称为组中值。

第十三章 全等三角形

能够完全重合的两个图形叫做全等形(congruent figures)。

能够完全重合的两个三角形叫做全等三角形(congruent s)。

全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

两边和它们的夹角对应相等的两个三角形全等。(SAS)

两角和它们的夹边对应相等的两个三角形全等。(ASA)

两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

角平分线的性质:角平分线上的点到角的两边的距离相等。

到角两边的距离相等的点在角的平分线上。

第十四章 轴对称

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

线段垂直平分线上的点与这条线段两个端点的距离相等。

由一个平面图形得到它的轴对称图形叫做轴对称变换。

等腰三角形的性质:

等腰三角形的两个底角相等。(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

有一个角是60°的等腰三角形是等边三角形。

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

第十五章 整式

式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。

几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。

多项式里次数的项的次数,就是这个多项式的次数。

单项式和多项式统称整式(integral expression_r)。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

同底数幂相乘,底数不变,指数相加。

幂的乘方,底数不变,指数相乘

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

平方公式:(a+b)(a-b)=a^2-b^2

完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

(a+b+c)^2=a^2+2a(b+c)+(b+c)^2

同底数幂相除,底数不变,指数相减。

任何不等于0的数的0次幂都等于1。

第十六章 分式

如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。

分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方要把分子、分母分别乘方。

a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。

反比例函数的图像属于双曲线(hyperbola)。

当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

第十八章 勾股定理

勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2

勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

经过证明被确认正确的命题叫做定理(theorem)。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

第十九章 四边形

有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定:

1.两组对边分别相等的四边形是平行四边形;

2.对角线互相平分的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1.一组邻边相等的平行四边形是菱形(rhombus)。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理:

1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

线段的重心就是线段的中点。

平行四边形的重心是它的两条对角线的交点。

三角形的三条中线交于疑点,这一点就是三角形的重心。

宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。

第二十章 数据的分析

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数(mode)。

一组数据中的数据与最小数据的叫做这组数据的极(range)。

方越大,数据的波动越大;方越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查 报告

初二数学知识点归纳上册人教版相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 初二数学上册知识点总结

★ 初二数学上册知识点总结归纳

★ 数学八年级上册知识人教版

★ 八年级数学上册知识点归纳

★ 初二数学上册知识点总结2020

★ 八年级上册数学的知识点归纳

★ 人教版八年级上册数学教材分析

★ 初二上册数学知识点总结与学习方法

★ 八年级上册数学知识点总结

八年级上册数学书一次函数知识点

当m=12或20时,x^2-4等于0,所以是增根。

八年级上册数学书一次函数知识点1 一定要做好预习

初二学生想要学好数学,一定要学会提前预习。将老师要将的内容提前预习一下,对于自己在预习中会出现的不理解的概念或者不懂的知识点,要做好标记和记录,这样初二学生在数学课堂上才会注意力集中,这样在听课的过程中才能够跟上老师的讲课思路,自己的思维才能够集中。带着问题去听老师讲课,这样会将被动的学习变为主动,可以有效的提高初二新生在数学课堂上的学习效率。

课下要学会及时复习

当初二学生在课上认真听讲后,那么对于初二数学的学习课后也是需要及时复习的。当老师讲完初二数学一节课的内容之后,初中生一定要听明白,不要留下任何的疑点,有不懂的地方要及时的问同学或者老师。这样在课后复习的时候才能够自己的去完成作业。每一次的初二数学课后,初中生都应该将这节课学习的知识点进行归纳和整理。

初中数学有理数知识点

(一)定义

有理数为整数(正整数、0、负整数)和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

(二)有C.每一个学生理数的性质

(1)顺序性

(2)封闭性

(3)稠密性

(三)有理数的加法运算法则

1、同号两数相加,取与加数相同的符号,并把相加。

2、异号两数相加,若相等则互为相反数的两数和为0;若不相等,取较大的加数的符号,并用较大的减去较小的。

3、互为相反数的两数相加得0。

4、一个数同0相加仍得这个数。

5、互为相反数的两个数,可以先相加。

7、分母相同的数可以先相加。

8、几个数相加能得整数的可以先相加。

9、减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

八年级上册数学书一次函数知识点2

一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫函数。当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

一次函数的图象及性质

一次函数y=kx+b的图象是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k≠0)

(2)必过点:(0,b)和(—b/k,0)

(3)走向:k>0,图象经过、三象限;

b>0,图象经过、二象限;

b<0,图象经过第三、四象限

k>0,b>0;直线经过、二、三象限

K0;直线经过、二、四象限

K<0,b<0;直线经过第二、三、四象限

(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小。

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位。

直线y=k1x+b1与y=k2x+b2的位置关系

(1)两直线平行:k1=k2且b1≠b2

(2)两直线相交:k1≠k2

(3)两直线重合:k1=k2且b1=b2

确定一次函数解析式的方法

(1)根据已知条件写出含有待定系数的函数解析式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数解析式中得出结果。

函数建模的关键是将实际问题数学化,从而解决方案、策略等问题。建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线。这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义。从图象中获取的信息一般是:

(1)从函数图象的形状判定函数的类型;

(2)从横、纵轴的实际意义理解图象上点的'坐标的实际意义。解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实4.先化简,再求值;(1/x - 2/x的平方)/(1-2/x) 其中x=-3.5际问题的函数。

用函数观点看方程(组)与不等式

一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值。

一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围。

一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=—(a/b)x++c/b的图象相同。

(2)二元一次方程组

a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的图像交点。

八年级上册数学一次函数知识点

勤动手:做题不要看,一定要算,不会的知识点写下来,记在 笔记本 上。

知识是外在的照明,智慧是内在的照明。知识具有使用价值,而智慧具有它自身的价值。下面给大家分享一些关于 八年级 上册数学一次函数知识点,希望对大家有所帮助。

八年级上册数学一次函数知识1

知识点1 一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

知识点2 函数的图象

由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质

(1)k的正负决定直线的倾斜方向;

①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大

①当b>0时,直线与y轴交于正半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

②如图所示,当k>0,b

③如图所示,当k﹤O,b>0时,直线经过、二、四象限(直线不经过第三象限);

④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过象限).

(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

八年级上册数学一次函数知识2

知识点4 正比例函数y=kx(k≠0)的性质

(1)正比例函数y=kx的图象必经过原点;

(2)当k>0时,图象经过、三象限,y随x的增大而增大;

(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.

知识点5 点P(x0,y0)与直线y=kx+b的图象的关系

(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1读好一本教科书它是教学、中考的主要依据;)不在直线y=x+l的图象上.

知识点6 确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

知识点7 待定系数法

先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的 方法 ,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

八年级上册数学一次函数知识3

知识点8 用待定系数法 确定一次函数表达式一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

思想方法小结 (1)函数方法.(2)数形结合法.

知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.

当b=0时,直线经过原点;

当b﹤0时,直线与y轴的负半轴相交.

②当k,b异号时,直线与x轴正半轴相交;

当b=0时,直线经过原点;

当k,b同号时,直线与x轴负半轴相交.

③当k>O,b>O时,图象经过、二、三象限;

当k>0,b=0时,图象经过、三象限;

当b>O,b②当b<0时,直线与y轴交于负半轴上;

八年级上册数学一次函数知识点相关 文章 :

★ 初二数学一次函数知识点总结

★ 八年级数学上册知识点归纳

★ 八年级数学下册一次函数综合复习

★ 初二数学上册知识点总结归纳

★ 初二数学上册知识点总结2020

★ 八年级上册数学复习提纲2020

★ 初二一次函数经典例题

★ 八年级上的数学思维导图测试题

鲁教版八年级上册数学提纲

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

随着年级的不同,所接触的数学课本知识难度也会有所变化,要适应这些变化就要学会做提纲,下面我给大家分享一些鲁教版 八年级 上册数学提纲,希望能够帮助大家,欢迎阅读!

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

鲁教版八年级上册数学提纲

=1/2008×(1+2007)÷2×2007

因式分解

1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的 方法 :常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的公约数?相同因式的次幂.

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的结果要求分解到每一个因式都不能分解为止;

(4)因式分解的结果要求每一个因式的首项符号为正;

(5)因式分解的结果要求加以整理;

(6)因式分解的结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

分式

1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.

2.有理式:整式与分式统称有理式;即 .

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的结果要求化为最简分式.

8.分式的乘方: .

9.负整指数计算法则:

(1)公式: a0=1(a≠0), a-n= (a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式: , ;

(4)公式: (-1)-2=1, (-1)-3=-1.

10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

12.同分母与异分母的分式加减法法则: .

13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

如何提高初中数学成绩

数学基础知识的学习

想要把数学学好这记忆与理解的方法是必须要学会的。理解是一门必要学习的法则,只有理解准确,不跑题再结合方法就一定能够解答。只要能很好的理解这个题目是怎样的结构,就可以很好的解出。在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式不外乎都是结合了一些三角函数的定义与加法定理为基础方面上,在记忆数学公式的同时,你可以结合一些例题进行推理,从而可以更快加速你对这公式的理解与记忆。

数学解题

学数学必须是要脚踏实地的,没有那么多投机取巧的办法,数学练习要讲究高质量的和对症下的方法。对于例题,要养成先分析再做题的习惯,遇到不懂可以先做好标记,然后再多跟同学老师沟通交流。要尝试结合多种解题方式,要多练习。

错题集

针对做错的题目,列举出该题目所有的解题方法(可以从,或者同学,老师那里请教),总有一种是你能掌握的。针对几套试卷讲解,即可有明显成效。一开始,看似每道题花很久才能了解所有解题方案,但是,成效是非常明显的。

作业

作业对于很多的学生来说都是不陌生的,一般老师在上完课之后都会布置一些作业,这样使上课所学的内容充分的运用出来,仅仅依靠上课听是不够的,还需要在下课之后进行练习来讲上课所学的知识巩固。

提高初中数学成绩的方法

个好方法就是降低电子产品游戏和无关电子学习的活动频率,比如用手机看、聊天等。

第二个好方法就是培养质疑人和事的思维和习惯,这个可以让家长帮忙故意制造一些数学错误,让自己独自去发现。

第三个好方法就是对一个知识点,不仅要会做同一类题目,还要能够培养自己把知识点迁移运用到其他不同类的题目上去。

第四个好方法就是建立一套属于自己的错题集和难题本,在这些本子上记录自己的解题思路, 心得体会 , 总结 和思考。不能为了抄题和记题。家长也可以起到辅助作用,可以装不懂,让孩子像老师那样讲解给自己听。

鲁教版八年级上册数学提纲相关 文章 :

★ 八年级上册数学复习提纲整理

★ 2021八年级上册数学复习提纲

★ 八年级数学知识点整理归纳

★ 八年级上册数学总复习知识点

★ 八年级上册数学复习资料

★ 数学八年级上册知识点整理

★ 初二数学上册知识点总结

★ 2021初二上学期数学复习提纲

★ 八年级数学上册知识点归纳

★ 八年级上册数学的知识点归纳

沪科版八年级数学知识点总结

B.女性职工人数

打盹会做梦,学习会圆梦。要想提高自身的学习成绩,则需要实际行动起来,不能三天打鱼,两天晒网,学习如同逆水行舟,不进则退。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

①如图所示,当k>0,b>0时,直线经过、二、三象限(直线不经过第四象限);

初二上学期数学知识点归纳

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻③、等腰三角形的判定的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

1、确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

八年级上册数学知识点

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在象限:x;0,y;0

点P(x,y)在第二象限:x;0,y;0

点P(x,y)在第三象限:x;0,y;0

点P(x,y)在第四象限:x;0,y;0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

初二数学 复习 方法 总结

一、初中数学中考复习方法:

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的 经验 。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

这些看似平凡简单,但是确实老师亲身的体验,用心观察我们的中考、高考状元,其实他们每天重复的不就是老师刚刚说的吗?

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学次做练习出错,如果不及时纠正、 反思 ,而仅仅是把改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。

沪科版八年级数学知识点总结相关 文章 :

★ 沪科版八年级上册数学复习提纲

★ 八年级数学沪科版知识点

★ 八年级数学知识点沪科版

★ 八年级上册数学复习知识提纲沪科版

★ 八年级数学知识点整理归纳

★ 初中数学知识点总结(沪科版)

★ 沪科版八年级数学上册知识点

★ 八年级上册数学复习资料

★ 八年级上册数学沪科版复习提纲

★ 初二数学上册知识点总结

苏教版八年级数学知识点总结

审查问题14

伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二数学知识点

相似、全等三角形

1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

5、判定定理3三边对应成比例,两三角形相似(SSS)

6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

8、性质定理2相似三角形周长的比等于相似比

9、性质定理3相似三角形面积的比等于相似比的平方

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等

12、推论有两角和其中一角的对边对应相等的两个三角形全等

13、边边边公理有三边对应相等的两个三角形全等

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

15、全等三角形的对应边、对应角相等

等腰、直角三角形

1、等腰三角形的性质定理等腰三角形的两个底角相等

2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

3、等腰三角形的顶角平分线、底边上的中线和高互相重合

4、推论3等边三角形的各角都相等,并且每一个角都等于60°

5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

6、推论1三个角都相等的三角形是等边三角形

7、推论2有一个角等于60°的等腰三角形是等边三角形

8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

9、直角三角形斜边上的中线等于斜边上的一半

八年级数学知识点

1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

2、折线统计图的 方法 :在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

3、能够看出折线统计图所提供的信息,并回答相关的问题。

补充内容:

1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,(x+p)(x+q)=x^2+(p+q)x+pq折线统计图用折线表示数量的增减变化情况。

2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。

课后练习

1.统计学的基本涵义是(D)。

A.统计资料

B.统计数字

C.统计活动

D.是一门处理数据的方法和技术的科32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。

2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。

A.每一个国有工业企业

B.该地区的所有国有工业企业

D.每一个企业

3.要了解20个学生的学习情况,则总体单位是(C)。

A.20个学生

B.20个学生的学习情况

D.每一个学生的学习情况

4.下列各项中属于数量标志的是(B)。

A.性别

B.年龄

C.职称

D.健康状况

5.总体和总体单位不是固定不变的,由于研究目的改变(A)。

A.总体单位有可能变换为总体,总体也有可能变换为总体单位

B.总体只能变换为总体单位,总体单位不能变换为总体

C.总体单位不能变换为总体,总体也不能变换为总体单位

D.任何一对总体和总体单位都可以互相变换

6.以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(C)。

A.男性职工人数

C.下岗职工的性别

D.性别构成

八年级下册数学复习知识点

零指数幂与负整指数幂

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些较小的数

难点:理解和应用整数指数幂的性质。

一、复习练习:

1、;=;=,=,=。

2、不用计算器计算:÷(—2)2—2-1+

二、指数的范围扩大到了全体整数.

1、探索

现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些较大的数,即利用10的正整数次幂,把一个大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

归纳:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.

所以35纳米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以这个纳米粒子的直径为3.5×10-8米.

5、练习

①用科学记数法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1纳米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

苏教版八年级数学知识点 总结 相关 文章 :

★ 各年级数学学习方法大全

★ 各年级数学学习方法大全

★ 苏教版小学数学总复习基础知识

★ 八年级学习方法指导

★ 新人教版八年级上册数学期末试卷

★ 苏教版初一数学知识点

★ 初一数学知识点上册苏教版

★ 苏教版小学数学总复习资料提纲

★ 各年级数学学习方法大全

★ 初二数学轴对称的思维导图

2022八年级上册数学提纲

13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。

数学是一门很重要的学科,我们从小学到高中都会系统的去学习数学中的各个内容。这门伴随我们学习生涯最久的学科在带给我们知识的同时也带给我们烦恼。以下是我给大家整理的 八年级 上册数学提纲_八年级上册数学知识点,希望对大家有所帮助,欢迎阅读!

2021八年级上册数学提纲

一、轴对称图形

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

3、轴对称图形和轴对称的区别与联系

4.轴对称的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等

3.与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等腰三角形)知识点回顾

1.等腰三角形的性质

①.等腰三角形的两个底角相等。(等边对等角)

②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边三角形)知识点回顾

1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

①、等腰三角形的性质

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

②、等腰三角形的其他性质:

(1)等腰直角三角形的两个底角相等且等于45°

(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

(3)等腰三角形的三边关系:设腰长为a,底边长为b,则

(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

④、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

数学学习困难的原因

1、学习自觉性较

初中生学习自觉性较,缺少解题的积极性,解题时不注重步骤、过程。

2、学习意志薄弱

数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

3、无兴趣学习或兴趣低

一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

4、没有养成良好的数学学习习惯

有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

所以同学们要注意自己是否存在以上问题,要想办法及时解决。

数学 学习 方法

1.注重预习培养自学能力

在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。

一划:就是圈划知识要点,基本概念。

二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。

三试:就是尝试性地做一些简单的练习,检验自己预习的效果。

四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。

2、把握课堂,提高学习效果

课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。

手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

耳到:专心听讲,听老师如何讲课,如何分析、如何归纳 总结 。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

眼到:就是一看老师讲课的表情结论4:三角形一条中线和与它相交的中位线互相平分。,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

3、掌握练习方法,提高解答数学题的能力

数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

4、掌握 复习方法 ,提高数学综合能力.

复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法。

(1).合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习。

(2).采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,是整理巩固,形成完整的知识体系。

(3).突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力。

2021八年级上册数学提纲相关 文章 :

★ 八年级上册数学教学工作2021

★ 2021初中数学知识点总结

★ 初一数学上册知识点2021

★ 2021八年级数学教学

★ 初中数学知识点总结2021

★ 初二上学期数学知识点

★ 2021年初二下册数学知识点

★ 2021年初一数学上册知识点归纳

★ 2021八年级上册语文复习提纲

★ 初二暑数第十七章 反比例函数学学习2021

2016奥运会女排半决赛 2016奥运会女排半决赛美

2016奥运女排冠军是哪个 12、里约奥运会波多黎各落选赛冠军波多黎各(中北美洲) 2016奥运女排冠军是队女排获2016:得的。 2016奥运会女排半决赛 2016奥运会女排半决赛美国 2016奥运会女排半决赛···

pdf是什么意思通俗讲 pdf是什么呀

小栢给大家谈谈pdf是什么意思通俗讲,以及pdf是什么呀应用的知识点,希望对你所遇到的问题有所帮助。 pdf是什么意思通俗讲 pdf是什么呀 pdf是什么意思通俗讲 pdf是什么呀 1、(2)字型嵌入系统,···

4399斗罗大陆3d(4399斗罗大陆激活码)

今天小深来给大家分享一些关于4399斗罗大陆激活码方面的知识吧,希望大家会喜欢哦 4399斗罗大陆3d(4399斗罗大陆激活码) 4399斗罗大陆3d(4399斗罗大陆激活码) 1、9、《太古神王》。 2、3D类战斗游戏,···