小学方程应用题(小学方程应用题难题)
2024-11-10 09:55 - 立有生活网
小学数学列方程解应用题
(4)某商场经销一种商品,由于进货时价格比原来进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.2.男7 女21 (人)
小学方程应用题(小学方程应用题难题)
小学方程应用题(小学方程应用题难题)
小学方程应用题(小学方程应用题难题)
1.解;设高为x米。
1/2{(56-26)x-(56-26-5)x}=30
x=12
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。答....
2.解:设男同学有x人,则女同学有3x人。
3x-(x+8)=6
x=7
女3x7=21(人)
答.....
小学列方程解应用题
设甲厂原来的生产任务是x小学列方程解应用题
列方程问题 【含义】 把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的,这个过程,就叫做列方程解应用题。
【数量关系】 方程的等号两边数量相等。
【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。
(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。
(2)设:把应用题中的未知数设为Χ。
(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。
(4)解;求出所列方程的解。
(5)验:检验方程的解是否正确,是否符合题意。
(6)答:X=50回答题目所问,也就是写出答问的话。
例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?
解 种方法:设乙班有Χ人,则甲班有(90-Χ)人。
找等量关系:甲班人数=乙班人数×2-30人。
列方程: 90-Χ=2Χ-30
解方程得 Χ=40 从而知 90-Χ=50
第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。
列方程 (2Χ-30)+Χ=90
解方程得 Χ=40 从而得知 2Χ-30=50
答:甲班有50人,乙班有40人。
例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?
解 种方法:设兔为Χ只,则鸡为(35-Χ)只,兔的脚数为4Χ个,鸡的脚数为2(35-Χ)个。根据等量关系“兔脚数+鸡脚数=94”可列出方程 4Χ+2(35-Χ)=94 解方程得 Χ=12 则35-Χ=23
第二种方法:可按“鸡兔同笼”问题来解答。设全都是鸡,
则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2)
所以 兔数=(94-2×35)÷(4-2)=12(只)
鸡数=35-12=23(只)
答:鸡是23只,兔是12只。
例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?
解 种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。 940÷4-125=110(袋)
第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。 (940-125×4)÷4=110(袋)
第三种方法:设乙汽车每次运Χ袋,可列出方程 940÷4-Χ=125
解方程得 Χ=110
第四种方法:设乙汽车每次运Χ袋,依题意得
(125+Χ)×4=940 解方程得 Χ=110
答:乙汽车每次运110袋。 ;
用方程解的小学高难度应用题
7.8=2.4x1、设:甲组为x,则乙组为200-x
x/3=(200-x)/10+19
x=90
200-x=110
2、设:慢车为x
605-302=5x
x=48
3、设:原来有油x
[x(1-75%)+85]/x=6/7
x=340
4、设:甲车速度为x,乙车速度为5x/4
(x+5x/4)6=324
x=24
1、设:甲组为x,则乙组为200-x
x/3=(200-x)/10+19
x=90
200-x=110
2、设:慢车为x
605-302=5x
x=48
3、
4. 324/6/(1+4/5)
=54/(9/5)
=30(千米分析:两根绳子剪去相同的一段,长度没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。)
304/5=24(千米)
小学数学题(应用题要算式或方程)
16、伟今年16岁,今年61岁、几年前的年龄正好是小伟年龄的6倍?1.12(8-6)=6小时
2.200-80=120 1202=60 6015=4次
3.2.1-0.2=1.9 2.138001.9=4200件
4.254=100 160+100=263食堂买来面粉和大米,面粉的重量是大米的两倍,每天吃15千克大米,20千克面粉,几天后大米全部吃完,面粉还剩80千克,这个食堂买来大米和面粉各多少千克?0 2604=65个
1、12/(8-6)=6小时
2、(200-80)/2/15=4次
3、38002.1/(2.1-0.2)=4200套
或38000.2/(2.1-0.2)+3800=4200套
4、25(160/25+4)/4=65个
1,12(8-6)=6小时
小学五年级解方程解应用题多解
实际每天生产60台大地小学今年招收1年级新生150人,其中男生人数是女生的1.5倍。一年级男、女学生各有多少人?
解:把女生看作1,男生就是1.5。
女生人数是:150÷(1+1.5)=60人,男生人数是:60×1.5=90人。
一块地种鱼米可收入0元,比种土豆收入的3倍还多100元。这块地种土豆可收入多少元?
解:种土豆可收入:(0-100)÷3=800元。
五(2)班同学到工地去搬砖,共搬砖1100块。男同学有20人,每人搬砖25块。女同学有30人,每人搬砖多少块?
解:S=1/2(56-26)X12=180平方米女生每人搬:(1100-25×20)÷30=20块。
客车和货车从相距600千米的甲、乙两地同时出发,相向而行,6小时后相遇。客车每小时行驶40千米,货车每小时形势多少千米?(用两种方程解)
解:设货车每小时行X千米。
方程一:40×6+6X=600
6X=360
X=60
方程二:X+40=600÷6
X+40=100
X=60
货车每小时行60千米。
用120cm长的铝合金做两个长方形的镜框,要求每个镜框的长是18cm,那么宽应该是多少cm?
在线等,求高人!!!
解:两个镜框四条长为:18×4=72cm。
宽是:(120-72)÷4=12 cm。(这是两个镜框完全一样)
如果宽不一样的话,
长都是18 cm,两个长方形的宽的和是:(120-72)÷2=24。
一宽11,另一宽13
一宽10,另一宽14
小学列方程解应用题
同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在Χ后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的Χ值也不带单位名称,在答语中要写出单位名称。检验的.过程不必写出,但必须检验。1.设甲原来有χ吨煤,则乙有100-χ吨煤。
(100-χ+10)×1.5=χ-10
165-1.5χ-2.5χ+10=0
2.5χ=175
χ=70
所以甲有70吨,乙有30吨。
1、设甲堆原来有X吨,则乙堆原来是(100-X),依题意有
(X-10)=1.5(100-X+10)
移项得2.5X=175
所以 X=70
100-X=30
原来甲堆有70吨煤,乙堆有30吨煤。
2、设第二个正方形的边长为X厘米。则个正方形的边长为(2X+1)厘米3:家具厂卖出书柜个数是五X柜的五分之一,卖出的书柜比五X柜少120个,卖出书柜和五X柜各多少?(方)
依题意得:4(2X+1)-4X=24
即4x=20X=5
2X+1=11
个正方形的边长为11厘米,第二个正方形的边长为5厘米。
3、设菜地原来的宽是X米,则长是5X米,(已知条件不足)
1.设甲队原有煤x吨,则乙队原有煤(100-x)吨。(x-10)/(100-x+10)=1.5。解得甲原有70吨,乙原有30吨。
2.面积各是121,25.
3.你的题目不完整吧??????????
数学题应该自己做
小学方程应用题
2,如果每条船坐5人,则多5人,如果每条船坐5人,则有4个空位。1.设乙的速度是X米/小时
(1.5X+1.5)2.5=357
X=94.2米/小时
2.设每把椅子为X元,则桌子为X+64元
3(X+64)+8X=808
X=56(元)
3.设这个数为X
3.6X-2.4X=7.2
X=6现价格为(1-20%)A,现销售量为(1+20%)B,
希望对你有帮助
1、设乙车速度为X,2.5X+1.52.5X=357
X=57.12
X=56
3、设这个数为X,3.6X=2.4X+7.2
X=6
jflksjdfksjfdsjfadpfsdfjlkdfjdjflkdjffirkdx
小学列方程解应用题
小学列方程解应用题的关键是:正确地设未知数;熟练地运用数量之间的各种已知条件,找出等量关系,列出方程;运用解方程的方确求出方程的解。
列方程解应用题是小学数学教学的一个转折点。从五年级开始就是教学的重点内容。不但要灵活运用方程式,更考查同学的思维逻辑能力以及理解能力。列方程解应用题题型变化多端,对于大多数同学们来说是一大难点。也是大家b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多1-3/5=2/5少。丢分非常的一个题型。
扣分主要可以分为两部分:一是对知识点掌握不够熟练,做题时无法理解题意,等量关系不准确。第二种就是解题格式不规范,比如漏写“解”、等号没有对齐、解完方程式忘写单位等这些细节。
列方程解应用题的方法
1、综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
2、分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到己知。
小学六年级数学解方程应用题
x/1=(600-x)/11设货车平均速度X 752.5+2.5x=400 等于85
1,设货车每小时行X=200+67km。
75乘2.5+2.5x=400
187.5+2.5x=400
2.5x=212.5
x=85
简单上网查
庾澄庆和伊能静离婚 庾澄庆现任妻子
伊能静和庾澄庆为什么离婚? 跟他们的性格相似度,伊能静是典型的轸宿,这个我敢保证,因为我自己就是这个宿,非常清楚,秦昊我觉得必然是奎跟胃,太像了,然后再说一下星宿... 庾澄庆和伊能静离婚···
iptv什么意思 iptv指什么
新买的路由器有IPTV功能是什么意思 IPTV即交互式网络电视,是一种利用宽带有线电视网,集互联网、多媒体、通讯等多种技术于一体,向家庭用户提供包括数字电视在内的多种交互式服务的崭新技···
网络安全应急处置预案(网络安全处置应急预案
加强网络安全保障能力建设什么安全保护不断强化 3)调配应急响应演练所需的各项资源,并协调应急响应演练过程中涉及的部门和单位; 加强网络安全保障能力建设,关键信息基础设施安全保护···