八年级数学书苏科版 八年级上数学书苏科版

2025-04-14 04:39 - 立有生活网

苏科版八年级上册数学知识点归纳总结

1 全等三角形的对应边、对应角相等

八年级数学书苏科版 八年级上数学书苏科版八年级数学书苏科版 八年级上数学书苏科版


八年级数学书苏科版 八年级上数学书苏科版


八年级数学书苏科版 八年级上数学书苏科版


2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(SSS) 有三边对应相等的两个三角形全等

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23 推论3 等边三角形的各角都相等,并且每一个角都等于60°

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25 推论1 三个角都相等的三角形是等边三角形

26 推论 2 有一个角等于60°的等腰三角形是等边三角形

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28 直角三角形斜边上的中线等于斜边上的一半

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的

32 定理1 关于某条直线对称的两个图形是全等形

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

38定理 四边形的内角和等于360°

39四边形的外角和等于360°

40多边形内角和定理 n边形的内角的和等于(n-2)×180°

41推论 任意多边的外角和等于360°

42平行四边形性质定理1 平行四边形的对角相等

43平行四边形性质定理2 平行四边形的对边相等

44推论 夹在两条平行线间的平行线段相等

45平行四边形性质定理3 平行四边形的对角线互相平分

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

苏教版八年级数学书和人教版的一样吗

你好!

数学书是哪个版本出社的都不一样!

苏教版是指:由江苏教育出版社出版的一系列教材。

人教版是指:由教育出版社出版的图书,一般指教科书。

非常荣幸为你解答!

苏教版初二数学知识点下册

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二下册数学知识点

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零.

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3.分式的通分和约分:关键先是分解因式

4.分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘 方法 则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,

6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)

(1)同底数的幂的乘法:;

(2)幂的乘方:;

(3)积的乘方:;

(4)同底数的幂的除法:(a≠0);

(5)商的乘方:;(b≠0)

7.分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以简公分母时,简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以简公分母,化为整式方程;

(3)解整式方程;(4)验根.

增根应满足两个条件:一是其值应使简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入简公分母,如果简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?基本上有四种:

(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

(2)数字问题在数字问题中要掌握十进制数的表示法.

(3)工程问题基本公式:工作量=工时×工效.

(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.

8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.用科学记数法表示大于10的n位整数时,其中10的指数是

用科学记数法表示小于1的正小数时,其中10的指数是个非0数字前面0的个数(包括小数点前面的一个0)

八年级 下册数学复习资料

零指数幂与负整指数幂

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些较小的数

难点:理解和应用整数指数幂的性质。

一、复习练习:

1、;=;=,=,=。

2、不用计算器计算:÷(—2)2—2-1+

二、指数的范围扩大到了全体整数.

1、探索

现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些较大的数,即利用10的正整数次幂,把一个大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

归纳:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.

所以35纳米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以这个纳米粒子的直径为3.5×10-8米.

5、练习

①用科学记数法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1纳米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

初二数学 学习 经验 心得

学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是重要的,这就意味着你明白了老师的分析和解题过程。

课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并 总结 ,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了步,就必然能理解第二步,理解了步、第二步,就必然能理解第三步.这好比的阶级,在登时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从级登上第二级,从第二级登上第、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.

苏教版初二数学知识点下册相关 文章 :

★ 苏教版初二数学下册期末试卷

★ 苏教版二年级数学下册知识点复习

★ 苏教版二年级下册复习资料数学

★ 各年级数学学习方法大全

★ 苏教版八年级数学下册课本参考

★ 苏教版二年级数学知识点总结

★ 苏教版八年级数学下册期末试卷

★ 各年级数学学习方法大全

★ 八年级下册数学课本苏教版

★ 八年级数学学习方法指导

苏教版初二数学上册知识点归纳

这篇关于苏教版初二数学上册知识点归纳的文章,是 特地为大家整理的,希望对大家有所帮助!

章 轴对称图形

一、轴对称与轴对称图形的区别和联系

区别:轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的一种关系,而轴对称图形是两部分能完全重合的一个图形。

联系:两者都有完全重合的特征,都有对称轴,都有对称点。

二、轴对称的性质

1、定义——垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

2、 把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

3、 把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

4、 成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

三、线段、角的轴对称性

1、 线段是轴对称图形,线段的垂直平分线是它的对称轴。

线段的垂直平分线上的点到线段两端的距离相等;

2、 到线段两端距离相等的点,在这条线段的垂直平分线上;

线段的垂直平分线是到线段两端距离相等的点的。

3、 角是轴对称图形,角平分线所在直线是它的对称轴。

角平分线上的点到角的两边距离相等;

角的内部到角的两边距离相等的点,在这个角的平分线上。

四、等腰三角形的轴对称性

1、等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴。

2、等腰三角形的两个底角相等(简称“等边对等角”)。

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

4、直角三角形斜边上的中线等于斜边的一半。

5、直角三角形中30°角所对的直角边是斜边的一半。

6、三边相等的三角形叫做等边三角形或正三角形。

等边三角形是轴对称图形,并且有3条对称轴。

等边三角形的每个角都等于60°。

7、三条边都相等的三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

有一个角是60°的等腰三角形是等边三角形。

五、等腰梯形的轴对称性

1、定义——梯形中,平行的一组对边称为底,不平行的一组对边称为腰。两腰相等的梯形叫做等腰梯形。

2、等腰梯形是轴对称图形,过两底中点的直线是它的对称轴。等腰梯形在同一底上的两个

相等。

3、等腰梯形的对角线相等;对角线相等的梯形是等腰梯形。 4、在同一底上的两个角相等的梯形是等腰梯形。

第二章 勾股定理与平方根

一、勾股定理

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

a2+b2=c2

2221、 如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

2222、 满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股

数)。利用勾股数可以构造直角三角形。

二、平方根

1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

3、 求一个数a的平方根的运算,叫做方。

4、 正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

例如:4的平方根是±2,其中2叫做4的算术平方根,记作 =2;2的平方根是± 其中 2的算术平方根。

0只有一个平方根,0的平方根也叫做0的算术平方根,即

三、立方根

1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“ ,读作“三次根号a”。

2、求一个数a的立方根的运算,叫做开立方。

3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

四、实数

1、无限不循环小数称为无理数。

2、有理数和无理数统称为实数。

3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

五、近似数与有效数字

1、例如,本册数学课本约有100千字,这里100是一个近似数。

2、对一个近似数,从左边个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

第三章 中心对称图形(一)

一、图形的旋转

1、定义——在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小。

2、结论——旋转前、后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋转中心的连线所成的角彼此相等。

二、 中心对称与中心对称图形

1、定义——把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心。两个图形中的对应点叫做对称点。

2、一个图形绕着某一点旋转180°是一种特殊的旋转,因此,成中心对称的两个图形具有图形旋转的一切性质。

3、成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

4、把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。

三、平行四边形

1、定义——两组对边分别平行的四边形叫做平行四边形。

平行四边形是中心对称图形,对角线的交点是它的对称中心。

2、性质——平行四边形的对边相等。

平行四边形的对角相等。

平行四边形的对角线互相平分。

3、判断依据——一组对边平行并且相等的四边形是平行四边形。

两条对角线互相平分的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

两组对边分别平行的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形。

四、矩形、菱形、正方形

(一)矩形

1、定义——有一个角是直角的平行四边形叫做矩形。

矩形通常也叫做长方形。矩形是特殊的平行四边形,它具有平行四边形的一切性质。

2、性质——矩形的对角线相等且互相平分,四个角都是直角。

3、判断依据——有3个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

一个角是直角的平行四边形是矩形。

(二)菱形

1、定义——有一组邻边相等的平行四边形叫做菱形。

菱形是特殊的平行四边形,它具有平行四边形的一切性质。

2、 性质——菱形的四条边都相等。

菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角。

3、 判断依据——四边都相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

一组邻边相等的平行四边形是菱形。

急求苏教版初中数学书电子版(只要八下,九上,九下)!!!

相似图形的知识点

(2012-03-18 09:10:26)

转载▼

标签:

教育

知识点1.概念

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.

(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.

知识点2.比例线段

对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.

知识点3.相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等.

解读:(1)正确理解相似多边形的定义,明确“对应”关系.

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.

知识点4.相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形.

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比.

知识点5.相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.

知识点6.相似三角形的性质

(1)对应角相等,对应边的比相等;

(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.

(4)射影定理

中心对称的定义

把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。 中心对称和中心对称图形两者的联系

中心对称和中心对称图形是两个不同而又紧密联系的概念。区别是:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称。成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称。中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称。 也就是说:

① 中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

②中心对称:如果把一个图形绕某一点旋转180度后能与另一个图形重合,这两个图形成中心对称。 中心对称图形

正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆,平行四边形。

实际上,除了直线外,所有中心对称图形都只有一个对称点。 只是中心对称图形的规则图形

当然有。只是中心对称的图形需要满足不是轴对称图形。 平行四边形就是的一例。 既不是轴对称图形又不是中心对称图形 不等腰三角形,直角梯形等。

二次函数 y=ax^2+bx+c (a,b,c是常数,且a不等于0)

a>0开口向上

a<0开口向下

a,b同号,对称轴在y轴左侧,反之,再y轴右侧

|x1-x2|=根号下b^2-4ac除以|a|

与y轴交点为(0,c)

b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根

b^2-4ac<0,ax^2+bx+c=0无实根

b^2-4ac=0,ax^2+bx+c=0有两个相等的实根

对称轴x=-b/2a

顶点(-b/2a,(4ac-b^2)/4a)

顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a

函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减

函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减

当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大.

4.画抛物线y=ax2时,应先列表,再描点,连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。

二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和

x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).

求抛物线的顶点、对称轴、值的方法

①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有小值,当x=h时,y小值=k,若a<0,y有值,当x=h时,y值=k.

②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有小值,当x=- 时,y小值= ,若a<0,y有值,当x=- 时,y值= .

6.二次函数y=ax2+bx+c的图像的画法

因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:

(1)先找出顶点坐标,画出对称轴;

(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等);

(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.

复旦微电子学院 复旦微电子学院怎么样

曾璇现仼什么职务 1994-1996年 复旦大学和理工大学联合培养博士 复旦微电子学院 复旦微电子学院怎么样 复旦微电子学院 复旦微电子学院怎么样 1997.10 获复旦大学电子工程系博士学位 1997.7-今 复旦···

dnf手游上线时间(dnf手游上线时间2023)

本文目录一览: 1、 DNF手游什么时候上线 2、 地下城与勇士手游什么时候上线 3、 DNF国服手游什么时候出来的? 4、 dnf手游什么时候上线 5、 dnf手游上线日期 DNF手游什么时候上线 地下城与勇士的手···

闲鱼验货宝可靠吗 闲鱼验货宝可靠吗手机

闲鱼上通过验货宝的相机是真的吗? 卖家需要支付一定的用才能享受验货宝服务。其次,如果买闲鱼验货宝卖家吃亏。家对卖家的商品存在争议,卖家可能需要承担额外的费用和风险。例如,如果···