电路基本定理实验总结_电路基本定理实验总结与反思

2024-11-10 09:52 - 立有生活网

基本放大电路实验报告总结

基本放大电路实验报告总结

电路基本定理实验总结_电路基本定理实验总结与反思电路基本定理实验总结_电路基本定理实验总结与反思


电路基本定理实验总结_电路基本定理实验总结与反思


电路基本定理实验总结_电路基本定理实验总结与反思


基本放大电路实验报告总结,很多人在生活中都会充满好奇心,对所有东西都很好奇或者是不解,那么大家都知道基本放大电路实验报告总结是怎么写吗,下面和我一起来了解学习看看吧。

基本放大电路实验报告总结1

1.理解多级直接耦合放大电路的工作原理与设计方法

2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法

3.掌握多级放大器性能指标的测试方法

4.掌握在放大电路中引入负反馈的方法

二、实验预习与思考

1.多级放大电路的耦合方式有哪些?分别有什么特点?

2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无常工作,如何从电路结构上解决这个问题?

3.设计任务和要求

(1)基本要求

用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V, -VEE=-12V,要求设计分放大器恒流源的射极电流IEQ3=1~1.5mA,第二级放大射极电流IEQ4=2~3mA;分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。

三、实验原理

直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。

1.输入级

电路的输入级是采用NPN型晶体管的恒流源式动放大电路。动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。

典型的动放大电路采用的工作组态是双端输入,双端输出。放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。 该电路作为多级放大电路的输入级时,采用vi1单端输入,uo1的单端输出的工作组态。 计算静态工作点:动放大电路的双端是对称的,此处令T1,T2的相关射级、集电极电流参数为IEQ1=IEQ2=IEQ,ICQ1=ICQ2=ICQ。设UB1=UB2≈0V,则Ue≈-Uon,算出T3的ICQ3,即为2倍的IEQ也等于2倍的ICQ。

此处射级采用了工作点稳定电路构成的恒流源电路,此处有个较为简单的确定工作点的方法:

因为IC3≈IE3,所以只要确定了IE3就可以了,而IE3 UR4UE3 ( VEE), R4R4

UE3 UB3 Uon (VCC ( VEE)) R5 Uon R5 R6

uo1 ui1采用ui1单端输入,uo1单端输出时的增益Au1

2.主放大级 (Rc//RLRL (P//)1 Rb rbeR1 rbe

本级放大器采用一级PNP管的共射放大电路。由于本实验电路是采用直接耦合,各级的工作点互相有影响。前级的分放大电路用的是NPN型晶体管,输出端uo1处的集电极电压Uc1已经被抬得较高,同时也是第二级放大级的'基极直流电压,如果放大级继续采用NPN型共射放大电路,则集电极的工作点会被抬得更高,集电极电阻值不好设计,选小了会使放大倍数不够,选大了,则电路可能饱和,电路不能正常放大。对于这种情况,一般采用互补的管型来设计,也就是说第二级的放大电路用PNP型晶体管来设计。这样,当工作在放大状态下,NPN管的集电极电位高于基极点位,而PNP管的集电极电位低于基极电位,互相搭配后可以方便地配置前后级的工作点,保证主放大器工作于的工作点上,设计出不失真的放大倍数。

采用PNP型晶体管作为中间主放大级并和分输入级链接的参考电路,其中T4为主放大器,其静态工作点UB4、UE4、UC4由P1、R7、P2决定。

分放大电路和放大电路采用直接耦合,其工作点相互有影响,简单估计方式如下:

,UC4 VEE IC4 RP2 UE4 VCC IE4 R7, UB4 UE4 Uon UE4 0.7(硅管)

由于UB4 UC1,相互影响,具体在调试中要仔细确定。 此电路中放大级输出增益AU2

3.输出级电路

输出级采用互补对称电路,提高输出动态范围,降低输出电阻。

其中T4就是主放大管,其集电极接的D1、D2是为了克服T5、T6互补对称的交越失真。本级电路没有放大倍数。

四、测试方法

用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出所有的仿真结果。

电路图如图1所示 uo2 Rc uo1Rb rbe

仿真电路图

图1静态工作点的测量:

测试得到静态工作点IEQ3,IEQ4如图2所示,符合设计要求。

图2 静态工作点测量

输入输出端电压测试:

测试分放大器单端输入单端输出波形如图3,输入电压为VPP=4mV,输出电压为VPP=51.5mV得到分放大器放大倍数大约为12.89倍。放大倍数符合要求。

图3 低电压下波形图 主放大级输入输出波形如图4

图4 主放大级输入输出波形图

如图所示输入电压为VPP=51.5mV,输出电压为VPP=6.75V放大倍数为131.56倍。 整个电路输入输出电压测试如图

图5 多级放大电路输入输出波形图

得到输入电压为VPP=4mV,输出电压为VPP=4.29V,放大倍数计算得到为1062倍 实验结论:

本电路利用动放大电路有效地抑制了零点漂移,利用PNP管放大级实现主放大电路,利用互补对称输出电路消除交越失真的影响,设计并且测试了多级放大电路,得到放大倍数为1000多倍,电路稳定工作。

基本放大电路实验报告总结2

实验一:仪器放大器设计与仿真

一. 实验目的

1.掌握仪器放大器的设计方法

2.理解仪器放大器对共模信号的抑制能力

3.熟悉仪器放大器的调试方法

4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表信号发生器等虚拟仪器的使用

二. 实验原理

仪器放大器是用来放大值信号的高精度放大器,它具有很大的共模抑制比,极高的输入电阻,且其增益能在大范围内可调。仪器放大器原理图如下所示:

仪器放大器由三个集成运放构成。其中,U3构成减法电路,即值放大器,U1、U2各对其相应的信号源组成对称的同相放大器,且R1=R2,R3=R5,R4=R6。 令R1=R2=R时,则

Vo2—Vo1=(1+2R/Rg)(Vi2—Vi1)

U3是标准加权减法器,Vo1、Vo2是其输入信号,其相应输出电压 Vo=—(R6/R5)Vo2+R4/(R3+R4)Vo1(1+R6/R5)

由于R3=R5=R4=R6=R,因而

Vo=Vo1—Vo2=(1+2R/Rg)(Vi1—Vi2)

仪器放大器的值电压增益

Avf=Vo/(Vi1—Vi2)=1+2R/Rg

因此改变电阻的值可以改变仪器放大器的值电压增益,此仪器放大器的增益是正的。

三. 实验内容

1.按照上述原理图构成仪器放大器,具体指标为:

(1)当输入信号Ui=2sinwt(mV)时,输出电压信号Uo=0.4sinwt(mV),Avf=200,f=1kHz

(2)输入阻抗要求Ri>1MΩ

2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。

3.记录数据并进行整理分析

四. 实验步骤

按下图连好电路,并设置函数信号发生器,输出正弦,频率为1kHz,幅度为2mV;用示波器观察波形变化

其中Avf=1+2R/Rg≈200,输入的为模信号2mV符合实验要求

五.实验结果

如图示波器CH1、CH2、CH3分别是Vi1、Vi2、Vo, 由图可知输出Vo=0.4sinwt(V), 且和Vi1同相

六.实验心得体会

从这次实验中我学会了multisim的基本作方法,理解了仪器放大器的原理,而且通过仿真实验更加熟悉了一些常见电路元件的功能

求基尔霍夫定律实验总结

一.实验目的

1.验证基尔霍夫定律,加深对基尔霍夫定律的理解;

2.掌握直流电流表的使用以及学会用电流插头、插座测量各支路电流的方法;

3.学习检查、分析电路简单故障的能力。

二.原理说明

1.基尔霍夫定律

基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压,即对电路中的任一结点而言,在设定电流的参考方向下,应有ΣI =0,一般流出结点的电流取正号,流入结点的电流取负号;对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有ΣU =0,一般电压方向与绕行方向一致的电压取正号,电压方向与绕行方向相反的电压取负号。

在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压方向应与电流方向一致,见图8-1所示。

2.检查、分析电路的简单故障

电路常见的简单故障一般出现在连线或元件部分。连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。

故障检查的方法是用用万用表(电压档或电阻档)或电压表在通电或断电状态下检查电路故障。

(1)通电检查法:在接通电源的情况下,用万用表的电压档或电压表,根据电路工作原理,如果电路某两点应该有电压,电压表测不出电压,或某两点不应该有电压,而电压表测出了电压,或所测电压值与电路原理不符,则故障必然出现在此两点间。

(2)断电检查法:在断开电源的情况下,用万用表的电阻档,根据电路工作原理,如果电路某两点应该导通而无电阻(或电阻极小),万用表测出开路(或电阻极大),或某两点应该开路(或电阻很大),而测得的结果为短路(或电阻极小),则故障必然出现在此两点间。

本实验用电压表按通电检查法检查、分析电路的简单故障。

三.实验设备

1.直流数字电压表、直流数字毫安表(根据型号的不同,EEL—Ⅰ型为单独的MEL-06组件,其余型号含在主控制屏上)

2.恒压源(EEL—Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ均含在主控制屏上,根据用户的要求,可能有两种配置(1)+6 V(+5V),+12V,0~30V可调或(2)双路0~30V可调。)

3.EEL-30组件(含实验电路)或EEL-53组件

四.实验内容

实验电路如图8-1所示,图中的电源US1用恒压源中的+6V(+5V)输出端,US2用0~+30V可调电压输出端,并将输出电压调到+12V(以直流数字电压表读数为准)。实验前先设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的作使用方法。

1.熟悉电流插头的结构,将电流插头的红接线端插入数字毫安表的红(正)接线端,电流插头的黑接线端插入数字毫安表的黑(负)接线端。

2.测量支路电流

将电流插头分别插入三条支路的三个电流插座中,读出各个电流值。按规定:在结点A,电流表读数为‘+’,表示电流流出结点,读数为‘-’,表示电流流入结点,然后根据图8-1中的电流参考方向,确定各支路电流的正、负号,并记入表8-1中。

表8-1 支路电流数据

各元件电压(V)

US1

US2

UR1

UR2

UR3

UR4

UR5

计算值(V)

测量值(V)

相对误

4.检查、分析电路的简单故障(EEL—Ⅴ型无此实验)

在图8-1实验电路中,用选择开关已设置了开路、短路、元件值、电源值错误等故障,用电压表按通电检查法检查、分析电路的简单故障:首先用选择开关选择‘正常’,在单电源作用下,测量各段电压,记入自拟的表格中,然后分别选择‘故障1~5’,测量对应各段电压,与‘正常’时的电压比较,并将分析结果记入表8-3中。

表8-3 故障原因

故障1

故障2

故障3

故障4

故障5

电路实验的心得体会

电路实验的心得体会(精选5篇)

当我们积累了新的体会时,心得体会是很好的记录方式,这样能够培养人思考的习惯。应该怎么写才合适呢?下面是我为大家整理的电路实验的心得体会(精选5篇),希望对大家有所帮助。

电路实验的心得体会1 本周主要进行电工实验设计和指导,经过一周时间,我们在辅导老师和辛勤帮助指导之下,完成了这次的实验任务,本次实验设计一共进行了四项,在进行实验之前,一定要把课本先复习掌握一下,以方便实验的经行和设计。我分别设计了对戴维南定理的验证试验,基本放大电路的实验,逻辑电路四人表决器的设计实验和六进制电路的设计实验,首先,在进行戴维南定理实验设计的时候,经过自己的资料查找和反复设计,排除实验过程中遇到的一些困难,最终的完成了实验任务及要求,在进行放大电路设计时就遇到了一定困难,也许是由于这些实验是电工教学中下册内容,在知识方面掌握还是不够,所以遇到了较多困难,通过老师指导和同学的帮助,一步一步进行改进和设计,在设计过程中也学到了许多放大电路的知识,更加深入的体会到有关放大电路的基本原理。设计6进制的时候要了解芯片的作用,懂得该芯片的原理,设计的就是逻辑电路实验,每个实验的设计都经历许多的挫折,产生许多的问题,我们在出现的问题上对实验设计进行一步步的修改,这样还帮助我们弄懂了很多的问题。

实验过程中,从发现问题到解决问题,无不让我们更加明白和学习到电工知识的不足,让我们更加深入透彻的学习掌握这些知识,我认为,这次的实验不仅仅更加深入的学习到了电工知识,还培养了自己思考,动手作的能力,并且我们学习到了很多学习的方法,这些都是今后宝贵的财富。通过电工实验设计,从理论到实际,虽然更多的是幸苦,但是学完之后,会发现我们收获的真的很多,所以这些付出都是值得的。

本次实验我们还利用了EWB软件绘图,这是一项十分有作用的软件,我们电工学学习此软件对今后学习帮助十分重大,所以这也是一项重大的收获。本次实验花了我较多时间,但是又由于实验周与考试安排较近,所以做的又有一定的匆忙性,实验设计上的缺陷还是很明显的,所以经过了老师和同学的批评指正,十分感激大家的帮助,我想这次的实验设计所收获的点点滴滴,今后一定能对我们起到重要的帮助!

电路实验的心得体会2 电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大二上学期将要结束之际,我们进行了一系列的电路实验,从简单基尔霍夫定律的验证到示波器的使用,再到一阶电路——,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但的.成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。

下面我想谈谈我在所做的实验中的心得体会:

在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误范围内,说明该实验做的成功。我认为这两个实验的实验原理还是比较简单的,但实际作起来并不是很简单,至少我觉得那些行行的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。

在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻Ro等于该网络中所有源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用,尽管它的作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃!

在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。

总的来说,通过此次电路实验,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实验过程中,更好的培养了我们的具体实验的能力。又因为在在实验过程中有许多实验现象,需要我们仔细的观察,并且分析现象的原因。特别有时当实验现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。因此电路实验可以培养我们的观察能力、动手做能力和思考能力。

电路实验的心得体会3 在实验具体作的过程中,对理论知识(半加器和全加器)也有了更近一步的理解,真正达到了理论指导实践,实践检验理论的目的。

实验作中应特别注意的几点:

(1)刚开始创建工程时选择的目标芯片一定要与实验板上的芯片相对应。

(2)连接电路时要注意保证线与端口连接好,并且注意不要画到器件图形符号的虚线框里面。

(3)顶层文件的实体名只能有一个,而且注意符号文件不能与顶层文件的实体名相同。

(4)保存波形文件时,注意文件名必须与工程名一致,因为在多次为一个工程建立波形文件时,一定要注意保存时文件名要与工程名一致,否则不能得到正确的仿真结果。

(5)仿真时间区域的设定与输入波形周期的设定一定要协调,否则得到波形可能不便于观察或发生错误。

心得体会:刚接触使用一个新的软件,实验前一定要做好预习工作,在具体的实验作过程中一定要细心,比如在引脚设定时一定要做到“对号入座”,曾经自己由于这一点没做好耗费了很多时间。实验中遇到的各种大小问题基本都是自己排查解决的,这对于自己解决问题的能力也是一个极大地提高和锻炼,总之这次实验我获益匪浅。

电路实验的心得体会4 数字电子技术是一门理论与实践密切相关的学科,如果光靠理论,我们就会学的头疼,如果借助实验,效果就不一样了,特别是数字电子技术实验,能让我们自己去验证一下书上的理论,自己去设计,这有利于培养我们的实际设计能力和动手能力。

通过数字电子技术实验,我们不仅仅是做了几个实验,不仅要学会实验技术,更应当掌握实验方法,即用实验检验理论的方法,寻求物理量之间相互关系的方法,寻求方案的方法等等,掌握这些方法比做了几个实验更为重要。

在数字电子技术实验中,我们可以根据所给的实验仪器、实验原理和一些条件要求,设计实验方案、实验步骤,画出实验电路图,然后进行测量,得出结果。

在数字电子技术实验的过程中,我们也遇到了各种各样的问题,针对出现的问题我们会采取相应的措施去解决,比如:

1、线路不通——运用逻辑笔去检查导线是否可用;

2、芯片损坏——运用芯片检测仪器检测芯片是否正常可用以及它的类型;

3、在一些实验中会使用到示波器,这就要求我们能够正确、熟悉地使用示波器,通过学习我们学会了如何调节仪器使波形便于观察,如何在示波器上读出相关参数,如在的考试实验《555时基电路及其应用》中,我们能够读出多谐振荡器的Tpl、Tph和单稳态触发器的暂态时间Tw,还有有时是因为接入线的问题,此时可以通过换用原装线来解决。

同时,我们也得到了不少经验教训:

1、当实验过程中若遇到问题,不要盲目的把导线全部拆掉,然后又重新连接一遍,这样不但浪费时间,而且也无法达到锻炼我们动手动脑能力的目的。

此时,我们应该静下心来,冷静地分析问题的所在,有可能存在哪一环节,比如实验原理不正确,或是实验电路需要修正等等,只有这样我们的能力才能有所提高。

2、在实验过程中,要学会分工协作,不能一味的自己动手或是自己一点也不参与其中。

3、在实验过程中,要互相学习,学习同学的方法和长处,同时也要学会虚心向指导老师请教,当然这要建立在自己思考过的基础上。

数字电子技术实验,有利于掌握知识体系与学习方法,有利于激发我们学习的主动性,增强自信心,有利于培养我们的创新钻研的能力,有利于书本知识技能的巩固和迁移。通过在数字电子技术实验中的实践,我收获了许多!

电路实验的心得体会5 通过一周的电子设计,我学会了如何将书本上学到的知识应用与实践,学会了一些基本的电子电路的设计、仿真与焊接,虽然在这个过程中我遇到了很多麻烦,但是在解决这些问题的过程中我也提高了自身的专业素质,这次设计不仅增强了自己在专业方面的信心,鼓舞了自己,更是一次兴趣的培养。

这次电子实习,我所选的课题是“倒计时光控跑马灯”,当拿到选题时,我认为这个不是很难。但当认真的考虑时,我才发现一切并非我想的那么简单。无论一个多么简单的课题,他所牵涉的知识比较多的,比如我这个选题不仅仅包括许多模电器件和数电器件,它还包含许多以前我没有接触或熟知的器件。所以我在设计时也在不断的学习,了解每一个器件的结构、工作原理及其运用。经过与搭档的多次交流,我们才确定了的电路方案,然后在多次的电路仿真之中,我们又进行了更加完善的修改,以达到万无一失。

第三天的任务主要是焊接自己设计的电路板。开始,我们都充满了好奇,毕竟这是次走进实验室去焊接电路板。不过才过了一天,所有的好奇心都烟消云散,换而的是苦与累。我这时才知道焊电路板确实是一件苦事。焊电路板要人非常的细心,并且要有一定的耐心,因为焊接示若稍不注意就会使电路短路或者焊错。经过一两天的坚苦奋斗,终于焊完的。但当我们去测试时却无法出现预期的结果。然后我没办法只得去慢慢检查,但也查不出个所以然来。我想实际的电路可能与仿真的电路会产生错,毕竟仿真的是在虚拟的界面完成的。

所以在接下来的几天我都在慢慢调试和修改中度过,想想那几天过的真的好累,在一次次的失败中修正却还是得不到正确的结果。好几次都想放弃,但还是坚持下来。经过多次调试,还是得到正确的结果,那一刻,我感觉如释重负,感觉很有成就感。一个星期的电子实习已经过去,但是使我对电子设计有了更的了解,使我学了很多,具体如下:

1、基本掌握手工电烙铁的焊接技能够的完成简单电子产品的安装与焊接。熟悉电子产品装工艺的生产流程,了解电子产品的焊接、调试与维修方法;

2、熟悉了有关电子设计与仿真软件的使用,能够熟练使用普通万用表;

3、熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能够灵活的运用

4、增强自己解决问题的能力,利用网上和图书馆的资源,搜索查找得到需要的信息;

5、明白了团队合作的重要性,和搭档相互讨论,

学会了怎么更好解决问题。

电路的基本定理实验

基本定律

电子所带的电荷量最小,故称为元电荷。

【电荷守恒定律】:电荷既不会消失也不会产生,只能从一个物体转移到另一个物体。这个定律主要说明了电荷是一种属性,而不是一种物体。由这个定理,我们可以想象能量守恒,电荷转移是需要电势能的作用,因此我们的热发电场所做的就是将热能转化为机械能,再转化为电能,产生电势能之后推动导体内部的自由电子运动产生电流了,这样我们的点灯就亮了,当然这其中还有很多细节问题,比如升压降压,整流,耦合等等。

【欧姆定律】:一段导体内的电流,跟加在这段导体的电压呈正比,跟这段导体的电阻成反比。这个定律仅仅说明电流与电压、电阻的关系,而电压和电阻是没有关系的,电阻是导体的根本属性,他的大小与电压电流没有半毛钱的关系。这个要区分清楚,通俗的说,电阻就是导体对电流的阻碍作用,这个阻碍作用是主要看导体的阻碍能力,后面我们再分析电阻的有关特性。

【库伦定律】:真空中的两个点电荷之间的相互作用力,与他们的电荷量的乘积呈正比,与他们的距离的二次方呈反比。这个定律与万有引力定律很类似,一个是宏观宇宙,一个是微观粒子,所谓一花一世界就是这个道理吧。库伦定律所阐述的这种作用力叫静电力。这个定理是说明白如何产生电场的关键所在。

【电场】:电荷周围存在电场,迅速运动的电荷会产生电磁场,静止的电荷产生电场,称静电场。这个观点和导体内部有电流通过时,导线外部产生电磁场的现象是一致的。

【焦耳定律】:电流通过导体产生的热量跟电流的二次方呈正比,跟导体的电阻及通电时间呈正比。以后在工程中,我们经常要考虑一个芯片的功耗,就是利用的电功率:单位时间内电流所做的功(P=UI)。因此我们要加散热片,或者风扇。

电路的基本概念和基本定律

电路的基本概念和基本定律如下:

电路就是一个为了完成某种功能而由一系列电气器件和导线按一定方式连接起来的电流通路。这些功能比如:电能的传输、分配与转换;电信号的传输、分配与转换等。

电路规模的大小,可以相很大,小到硅片上的集成电路,大到高低压输电网。根据所处理信号的不同,电子电路可以分为模拟电路和数字电路。

电路一般由电源(或者信号源)、负载和中间环节三部分组成。其中电源(信号源)是将其他形式的能量或信号转换为电能或电信号的装置。负载是使用电能,将电能转换为其他形式能量的装置。中间环节连接电源与负载之间,是传送、控制电能或电信号的部分。

KVL基尔霍夫电压定律(Kirchhofflaws)是电路中电压所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(GustRobertKirchhoff,1824~1887)提出。

内容是,在任何一个闭合回路中,各元件上的电压降的代数和等于电动势的代数和,即从一点出发绕回路一周回到该点时,各段电压的代数和恒等于零,即∑U=0

KCL基尔霍夫(电路)定律是求解复杂电路的电学基本定律。在19世纪40年代,由于电气技术发展的十分迅速,电路变得愈来愈复杂。某些电路呈现出网络形状,并且网络中还存在一些由3条或3条以上支路形成的交点()。

这种复杂电路不是串、并联电路的公式所能解决的,刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫(GustRobertKirchhoff,1824~1887),1845年,在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即的基尔霍夫定律。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。

闭合电路的欧姆定律及应用总结

欧姆定律知识归纳总结(八年物理下)

核心提示:一、探究电阻上的电流根两端电压的关系 试验探究方法:控制变量法 电阻一定时,导体中的电流跟导体两端的电压成正比。 电压一定时,导体中的电流跟导体的电阻成反比。二、欧姆定律及其应用 欧姆定律:导体中电流,跟导体两端的电压成正比,跟导体的电阻成反比。 公式: ( )。 式中单位:I→安(A);U→伏(V...

一、探究电阻上的电流根两端电压的关系

试验探究方法:控制变量法

电阻一定时,导体中的电流跟导体两端的电压成正比。

电压一定时,导体中的电流跟导体的电阻成反比。

二、欧姆定律及其应用

欧姆定律:导体中电流,跟导体两端的电压成正比,跟导体的电阻成反比。

公式: ( )。 式中单位:I→安(A);U→伏(V);R→欧(Ω)。

公式的理解:①公式中的I、U和R必须是在同一段电路中;②I、U和R中已知任意的两个量就可求另一个量;③计算时单位要统一。

欧姆定律的应用:

同一个电阻,阻值不变,与电流和电压无关 但加在这个电阻两端的电压增大时,通过的电流也增大。(R=U/I)

当电压不变时,电阻越大,则通过的电流就越小。(I=U/R)

当电流一定时,电阻越大,则电阻两端的电压就越大。(U=IR)

电阻的串联有以下几个特点:(指R1,R2串联)

电流:I=I1=I2(串联电路中各处的电流相等)

电压:U=U1+U2(总电压等于各部分电路的电压之和)

电阻:R=R1+R2(总电阻等于各电阻之和),串联电路的总电阻的阻值比任何一个分电阻的阻值都大。

如果n个阻值相同的电阻串联,则有R总=nR

分压作用: = ;

电阻的并联有以下几个特点:(指R1,R2并联)

电流:I=I1+I2(干路电流等于各支路电流之和)

电压:U=U1=U2(干路电压等于各支路电压)

电阻: (总电阻的倒数等于各并联电阻的倒数的和),并联电路的总电阻的阻值比任何一个分电阻的阻值都小。

如果n个阻值相同的电阻并联,则有R总= R

分流作用: ;

三、测量小灯泡的电阻

实验原理:欧姆定律(R=U/I)。(导体的电阻大小与电压、电流无关)

实验电路:

实验步骤:1、画出实验电路图;2、连接电路;(连接过程中,开关断开;闭合开关前,滑动变阻器滑片滑到电阻位置;合理选择电压表和电流表的量程)。3、从额定电压开始,逐次降低加在灯两端的电压,获得几组电压值和电流值(多次测量求平均值可减小实验误);4、算出电阻值;5、分析实验数据中电阻值变小的原因:灯丝电阻受到了温度的影响,通过灯丝的电流越大,灯丝温度越高,电阻越大。

四、欧姆定律和安全用电

电压越高越危险:根据欧姆定律,导体中的电流的大小跟导体两端的电压成正比;人体也是导体,电压越高,通过的电流就越大,达到一定程度就很危险了。

不能用湿手摸电器:对人体来说,比较潮湿的时候电阻小,发生触电时通过人体的电流会很大;另外,用湿手摸电器,易使水流入电器内,使人体和电源相连。

注意防雷:雷电是大气中一种剧烈的放电现象,放电时,电压和电流极大,放出巨大的热量和引起空气的振动。防雷要安避雷针。

断路:某处断开,没有接通的电路。

短路:电路中两点不该连的两点连到一起的现象。由于电线的电阻很小,电源短路时电流会非常大,会损坏电源和导线。

总结:

1.R=U/I中,是求电阻的公式,意思是这个电阻是一定的, 定下来的.此电阻中电流与电压成正比,并从比值中得知电阻大小. (这是个语言表达问题,请你理解其中的隐含意思)

2.1与2不成正比. 1与2都是定下的两个数字,无比例可言.比是两组数据或者两组未定的数据之间.

同样,如果电阻定下来了,那么他不与任何东西成比例.一个不变的东西是无比例可言的. 正如你圆周与直径成正比,L=peiD,你不能说pei与圆周成比,与D成反比,它并不随一个东西变大而变大或变小,他是常数,定下来的,不变的.

-----

电流恒定的情况下,电阻与电压成反比.

电阻恒定的情况下,电压与电流成正比.

高中物理必修三闭合电路的欧姆定律演示实验高清视频资源

奇瑞路虎极光价格20万 奇瑞路虎极光价格20万

今天小栢来给大家分享一些关于奇瑞路虎极光价格20万公里方面的知识吧,希望大家会喜欢哦 奇瑞路虎极光价格20万 奇瑞路虎极光价格20万公里 奇瑞路虎极光价格20万 奇瑞路虎极光价格20万公里 1、···

18年kod世界杯 18年kod总决赛王一博解说

舞蹈世界比赛的含金量是多少? 年份:2014 舞蹈世界比赛的含金量非常高,它是世界性的化比赛,规格很高,参加比赛的都是学舞蹈很多年的,能够在这世界比赛获得奖项的都是舞蹈家了。 18年kod世···

美缝剂用什么能洗掉 美缝胶粘衣服拿啥能洗掉

美缝剂粘在衣服上怎样才能清洗掉 可以用专门的清洗剂,有种外墙填缝剂,专用清洗剂可以清洗瓷砖等。 衣服上的美缝剂怎么去除 美缝剂用什么能洗掉 美缝胶粘衣服拿啥能洗掉了 美缝剂用什么能···