loglnlg的互换公式_log和ln之间的换底公式

2024-11-10 09:53 - 立有生活网

log对数函数的公式是什么?

log对数函数基本十个公式如下:

loglnlg的互换公式_log和ln之间的换底公式loglnlg的互换公式_log和ln之间的换底公式


loglnlg的互换公式_log和ln之间的换底公式


loglnlg的互换公式_log和ln之间的换底公式


1、 log(a)(MN)=log(a)(M)+log(a)(N);

2、log(a)(M/N)=log(a)(M)-log(a)(N);

3、log(a)(M^n)=nlog(a)(M) (n∈R);

4、log(A)M=log(b)M/log(b)A (b>0且b≠1);

5、对数恒等式:a^log(a)N=N,log(a)a^b=b;

6、log(a)M^(1/n)=(1/n)log(a)M;

7、 log(a)M^(-1/n)=(-1/n)log(a)M;

8、log(a^n)M^n=log(a)M;

9、log(a^n)M^m=(m/n)log(a)M;

10、log(a)b×log(b)c×log(c)a=1。

log对lnb=Nlna数函数运算注意事项

1、若式中幂指数则有以下的正数的算术根的对数运算法则,一个正数的算术根的对数,等于被开方数的对数除以根指数。

2、定义域x为真数,真数必须为正数,故定义域为{x|x>0}。每次进行拆分时保证每个真数为正数,如log2(-2(-4))不能拆分,但是其本身可以计算。

3、以10为底的对数函数通常记为lg,以自然数e(大约为2.73.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.18)为底的对数函数,通常记为ln。

对数的计算和公式

对数的计算和公式, 对数的计算公式和计算方法[有例题及计算步骤]. 定义:

则n=log(a)(b)

基本性质:

2、log(a)(MN)=log(a)(M)+log(a)(N);

3、log(a)(M÷N)=log(a)(M)-log(a)(N);

4、log(a)(M^n)=nlog(a)(M)

推导

1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N

由基本性质1(换掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

3、与(2)类似处理

MN=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

4、与(2)类似处理

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

a^[log(a)(M^n)] = a^{[log(a)(M)]n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)

由基本性质4可得

log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}

再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)

函数图象

[编辑本段]

1.对数函数的图象都过(1,0)点.

2.对于y=log(a)(n)函数,

①,当0

②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.

性质一:换底公式

log(a)(N)=log(b)(N)÷log(b)(a)

推导如下:

N = a^[log(a)(N)]

a = b^[log(b)(a)]lgx=0.4342944819032518276511288661......lnx

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)][log(b)(a)]}

又因为N=b^[log(b)(N)]

所以 b^[log(b)(N)] = b^{[log(a)(N)][log(b)(a)]}

所以 log(b)(N) = [log(a)(N)][log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

公式二:log(a)(b)=1/log(b)(a)

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数

log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1

利用对数的换底公式,计算。

log2 5 ×log 5 4 =(lg5/lg2) (2lg2/lg5)=2

log2 3×log3 4×log4 5×log5 6×log6 7×log7 8

=(lg3/lg2) (2lg2/lg3)(lg5/2lg2) (lg6/lg5)(lg7/lg6) (3lg2/lg7)

=2(3/2)

=3

自然对数的运算法则? 和公式?

①loga(MN)=logaM+logaN; ②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数 的底。定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 5、log(a^n)M=1/nlog(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]

对数的运算公式~~~?

log(MN)=log(M)+log(N)

你那个公式应该是没有的。。。

1对数的概念

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(3)logaMn=nlogaM (n∈R).

②logaan=? (n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

N—a—对数的底数

N—运

算性

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

难点疑点突破

对数定义中,为什么要规定a>0,,且a≠1?

理由如下:

①若a<0,则N的某些值不存在,例如log-28?

②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数?

③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数?

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数的计算

原式=3^从平时做题和考试来看,很多学生在涉及对数内容时常出错,主要表现为公式记错,或特殊值记不牢,或基本方法没掌握好,复习时一定要抓住重点,记牢记熟公式log3^2(底数)^6^2=3^21/2log^3(底数)^6=6

=3/2log2(底数)^2-(-1/2)log3(底数)^3

=3/2+1/2

=2

原式= - 5lg4/lg9+lg(32/9)/lg3-5log5(3)-[(1/4)^3]^(2/3)

= - 5lg2/lg3+[lg(1/9)+lg32]/lg3-5log5(3)-1/16

= - lg32/lg3+lg32/lg3-[lg3^(-2)]/lg3-5log5(3)-1/16

= -2-1/16--5log5(3)

=- 33/16--5log5(3)

计算机上的log都是默认以10为底的对数,因此log100 = 2,log1000 = 3。如果需要计算以非10为底的对数,要使用换底公式,比如想计算以7为底12的对数,在计算器上的作应该是 (log12) / (log7)

求对数的公式

定义式:

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N) / log(b)(a)

性质二

log(a^n)(b^m)=m/n[log(a)(b)]

对数函数的运算公式.

1、在简单的情况下,乘数中的对数计数因子,更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

对数的运算性质

当a>0且a≠1时,M>0,N>0,那么:

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(6)a^(log(b)n)=n^(log(b)a)

设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X

(8)由幂的对数的运算性质可得(推导公式)

2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m由指数的性质/n)log(a)M

3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M

log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M

5.log(a)b×log(b)c×log(c)a=1

扩展资料对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

参考资料

1、对数函数的运算公式如下图所示:

2、根据对数公式举例计算如下:

1、对数性质:在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0

2、常用对数:lg(b)=log10b(10为底数)。自然对数:ln(b)=logeb(e为底数)。其中e为无限不循环小数,通常情况下只取e=2.71828。

参考资料:

1、a^log(a)(b)=b

2、log(a)(a)=1

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a)[M^(1/n)]=log(a)(M)/n

一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。

对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:

当a>0,a≠1时,aX=N

X=logaN。(N>0)

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:在实数范围内,负数和零没有对数;

,log以a为底1的对数为0(a为常数) 恒过点(1,0)。

对数的运算性质

当a>0且a≠1时,M>0,N>0,那么:

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(6)a^(log(b)n)=n^(log(b)a)

设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X

(8)由幂的对数的运算性质可得(推导公式)

2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M

3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M

log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M

5.log(a)b×log(b)c×log(c)a=1

扩展资料:

对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

logaM+logaN=loga(MN)

logaM-logaN=loga(M/N)

loga(M^n)=nlogaM

延伸:log(a^m)b^n=(n/m)logab

换底公式:logab=logcb/logca

指数函数运算法则公式,对数函数和指数函数的一个重要的公式

1、对数的概念性质及其运算性质,换底公式

2、对数函数的性质

对数函数在高考中经常出现,高考中一般不单独考查运算,而以考查对数函数的图象、性质为主,性质又以单调性为主,有时在大题中与其他函数综合,这时一般要用导数解决,选择题,填空题和大题都有可能会出现,难度一般不大,只要掌握好图象和基本性质就不难解决。

在新课标中,反函数只要求了解指数函数与对数函数互为反函数即可,这比之前的要求降低很多,所以大家复习不用做难的拓展题,没必要。

如果a^b=N ,则b=logaN 叫对数。

其计算公式有loga1=0

loga(MN)=logaM+logaN

log(M/N)=logaM-logaN

logaN=logbN/logba 叫对数的换底公式

log10N=lgN 叫常用对数

logeN=lnN 叫自然对数(其中e=2.718281....)

我以为你的那个是书写的问题呢,我以为括号的那项是e的-23/1024次方的

如果是1—23/1024那就是另外的问题了,你要先明确那项

对数函数中 对数的换底公式是怎么推导出来的

设N=logab(表示以a为底b的对数)

b=a^N

两边取常用对数,得

N=lnb原式=log2的平方(底数)^2的三次方-log3的-2次方(底数)^3/lna=logab

也两边取自然对数,得

lneb=Nlnea

(以e为底a的对数问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?)

N=lneb/lnea=logab

综上所述,logab=lnb/lna=lneb/lnea

log与lg与ln,有什么区别,请详解,还有他们的公式详解,谢谢

(2)logaMN=logaM-logaN.

三者,就是一个底数不一样。

LOG,是可以任意(7)对数恒等式:a^log(a)N=N;数。

LG,是底数是10

LN,是底数是E。

相信等你认识接触一下下就明白了!

lg的底为10,即log10(10为下标)的简写;

ln的底为e,即loge(e为下标)的简写;

log的底可为任意非1正数。

log是对数函数 lg是以10为底的对数函数 In是以e为底的对数函数

记得好像是这样的

指数和对数怎么互换

如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

指数和对数的转换公式表示为x=a^y。

对数与指数之间的关系:当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x。log(a^k)(M^n)=(n/k)log(a)(M)(n属于R)。

换底公式(很重要):log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga。ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828)。lg常用对数(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)以10为底。

指数函数的定义域为R,这里的前提是a大于0且不等于1,对于a不大于0的情况则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑,指数函数的值域为(0,+),函数图形都是上凹的。

对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,可表示为x=a^y,因此指数函数里对于a存在规定a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时a越大,图像越靠近x轴、当0

两种形式的相互转化,熟练应用公式1oga1=0,1ogaa=1,alogaM=M,logaan=n,有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。

有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算。

log和ln之间的换算是什么?

log和ln之间没有换算关系。

而自然对数是以常数e为底数的对数,记作lnN(N>0),也常高中数学中log知识点有如下:见以logeN表示自然对数。即logeN=lnN。常数e的含义是持续的翻倍增长所能达到的极限值,是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。

在实数范围内,负数和零没有对数。在比较两个函数值时,如果底数一样,真数越大,函数值越大。(a>1时)。如果底数一样,真数越小,函数值越大。(0

对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计log(a)(b)=log(n)(b)/log(n)(a)算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

log和ln存在怎样的关系,

ln是以e为底 lg才是以10为底 这两个都是一种特殊的log 就像是根号,没有任何数字的时候就代表开方 ,有其他数字就代表其他开方,一个道理

logeX=lnX

ln是自然对数,是以e为底的对数

lgb—是常用对数,是以10为底的对数

log是一般的对数,可以以任何大于0且不等于1的数为底

ln是log的一种特殊形式

lna=loge若a^n=b(a>0且a≠1) a

底数分别是10和字母e。

lnx=2.30258509299404568401794546844......lgx

ln是以10为底数的log

lg函数运算公式

扩展资料:

log函数运算公式是y=logax(a>0&a≠1)。

logaMn=(n∈R)

一般地,如果a(a大于0,且a不等于1)的b次幂等于N(Nu003e0),那么数b叫做以a为底N的对数,记作logaN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=log(a)X,(其中a是常数,au003e0且a不等于1)叫做对数函数。Log函数的运算公式主要有运算法则、换底公式和推导公式。

一、运算法则:

1、Loga(MN)=logaM+logaN

2、loga(M/N)=logaM-logaN

3、logaNn=nlogaN

4、(n,M,N∈R)

如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底,其为无限不循环小数。定义:若an=b(au003e0,a≠1)则n=logab。

二、换底公式(很重要)

LogMN=logaM/logaN换底公式导出LogMN=-logNM

三、推导公式

Log(1/a (1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

Loga(b)logb(a)=1loge(x)=ln(x)lg(x)=log10(x)

了解了log函数的运算公式,才能够对函数公式灵活地进行转化,从而进一步提高运算的效率和准确性。

如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。对数函数化简问题,底数则要>0且≠1真数>0。

并且在比较两个函数值时如果底数一样,真数越大,函数值越大,(a>1时)。如果底数一样,真数越大,函数值越小,(0

六类和六类屏蔽网线区别 六类屏蔽网线的型号

六类屏蔽网线和非屏蔽网线的区别 双绞线是自绞屏蔽,会向外散射杂波,如果屏蔽起来,杂波会在屏蔽层内来回震荡,形成串扰,近了影响不明显,远了会影响传输,所以同样的线,加了屏蔽信号···

三国演义插曲大全23首歌词(三国演义插曲大全

电视剧三国演义歌词是什么 电视剧三国演义歌词 三国演义插曲大全23首歌词(三国演义插曲大全23首歌词作者) 三国演义插曲大全23首歌词(三国演义插曲大全23首歌词作者) 链接: 提取码: ygz5 歌曲:三···

对外开放新格局什么时候形成 对外开放形成的

全方位对外开放新格局形成的标志 1980年,以经济特区设立为标志,对外开放起程,经过二十多年的开放,形成了对外开放格局,即经济特区、沿海开放区、沿江开放港口城市、沿边开放城镇、内地省会开···