初一数学教学视频(初一数学教学视频免费北师大版)
2025-01-18 04:29 - 立有生活网
一年级数学上册一共有多少教学视频
(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.一年级数学上册一共有32集教学视频。
初一数学教学视频(初一数学教学视频免费北师大版)
初一数学教学视频(初一数学教学视频免费北师大版)
小学数学的介绍:
小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。荷兰教育家弗赖登诺尔认为:“数学来源于现实,也必须扎根于现实,并且应用于现实。”
的确,现代数学要求我们用数学的眼光来观察世界,用数学的语言来阐述世界。从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程。
因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。
整数的介绍:
1、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
2、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种4. 反思 :这个问题中除了A、B两地的路程是一个未知量,还有没有 其它 的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
3、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
5、要学会把小数化成分数和把分数化成小数的化法。
6、公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的一个,叫做公约数。)
7、互质数:公因数只有1的两个数,叫做互质数。
8、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
谁有初中学而思教学视频完整的,百度云分享一下,谢谢
(1)每包书有12册,n包书有___________册;学而思初中语文
依据“王家庄至青山路段的车速=青山至秀水路段的车速”?pwd=nb4r 提取码: nb4r
学而思 初中语文|第9讲标点考查:重点考查符号与辨析技法|第8讲排列顺序题:一致原则的方法|第7讲中考语言连贯:句子仿写与续写小秘招|第6讲常考修辞:一般与深层次考查的应对规律|第5讲常考病句:判断与修改的诀窍|第4讲语法知识:词性、短语与句子成分辨析技巧|第3讲常考词语与成语:辨析与运用的技法|第2讲中考汉字形义:辨析与运用的规律|第1讲中考汉字音:识记、运用与辨析的小秘诀|第11讲名著考查:考题与识记衔接技巧|第10讲古诗词句默写:识记技巧|【8050】鉴赏题神器之一——修辞手法【3讲】|[魔法语文]林彦双|2014中考语文版
学而思教学视频_视频大全_观看
你要的是学而思初中的哪一科,数学?语文?还是其他,都有。
学而思这个机构非常出名,这里的资料非常全,咨询加胃(字母+数字),字母mine,数字152175
理想是人生的太阳。 (公.众.耗):文智资料 有 尽量连续学习,千万不要学几天玩几天,
七年级数学《有理数的乘方》教案设计
让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。接下来是我为大家整理的 七年级数学 《有理数的乘方》教案设计,希望大家喜欢!
七年级数学《有理数的乘方》教案设计一
教学目标:
1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.
2.已知一个数,会求出它的正整数指数幂,渗透转化思想.
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.
教学过程设计:
(一)创设情境,导入新课
提问并学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.
说明:(1)举例94来说明概念及读法.
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(4)乘方是一种运算,幂是乘方运算的结果.
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
点拨:(1)计算时仍然是要先确定符号,再确定.
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是0.
【例2】计算:
(1)()3;(2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)2.
(四) 总结 反思 ,拓展升华
1.学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.
2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘 方法 则进行符号的确定和幂的求值.
乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.
(五)课堂跟踪反馈
1.课本P42练习第1、2题.
2.补充练习
(1)在(-2)6中,指数为,底数为.?
(2)在-26中,指数为,底数为.?
(3)若a2=16,则a=.?
(4)平方等于本身的数是,立方等于本身的数是.?
(5)下列说法中正确的是()
A.平方得9的数是3
B.平方得-9的数是-3
C.一个数的平方只能是正数
D.一个数的平方不能是负数
(6)下列各组数中,不相等的是()
A.(-3)2与-32 B.(-3)2与32
C.(-2)3与-23 D.|2|3与|-23|
(7)下列各式中计算不正确的是()
A.(-1)2003=-1
B.-12002=1
C.(-1)2n=1(n为正整数)
D.(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是()
A.|a+1| B.(a-1)2
C.-(-a) D.||
第2课时有理数的混合运算
教学目标:
1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.
2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.
教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.
教学难点:有理数的混合运算.
教学过程:
一、有理数的混合运算顺序:
1.先乘方,再乘除,加减.
2.同级运算,从左到右进行.
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
【例1】计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的.
【例2】观察下面三行数:
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.
二、课堂练习
1.计算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值.
3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?
三、课时小结
1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.
七年级数学《有理数的乘方》教案设计二
【教学目标】
(1)正确理解乘方、幂、指数、底数等概念.
(2)会进行有理数乘方的运算.
(3)培养探索精神,体验小组交流、合作学习的重要性.
【 教学方法 】
讲授法、讨论法。
【教学重点】
正确理解乘方的意义,掌握乘方运算法则.
【教学难点】
正确理解乘方、底数、指数的概念,并合理运算.
【课前准备】
教师准备教学用课件,学生预习。
【教学过程】
【新课讲授】
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记 作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作an.即a·a……a. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在an中,a叫底数,n 叫做指数,当an看作a的n次方的结果时,也可以读作a的n次 幂.
例如,在94中,底数是9,指数 是4,94读作9的 4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-( 2×2×2),结果是-8.
(-2)3与 -23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16.
(-2)4与-24的意义不同,其结果也不同.
( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.
例1:计算:
(1)(-4)3; (2)(-2)4; (3)(- )5;
(4)33; (5)24; (6)(- )2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(- )5=(- )×(- )×( - )×(- )×(- )=-
七年级数学《有理数的乘方》教案设计三
一、教学目标:
1、认知目标
正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。
2、能力目标
(1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
(2).使学生能够灵活地进行乘方运算。
3、情感目标
让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。
二、教学重难点和关键:
1、教学重点:正确理解乘方的意义,掌握乘方运算法则。
2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,
3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。
三、教学方法
考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
四、教学过程:
1、创设情境,导入新课:
这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。
师:如果四张都是3呢?
生答: -3 - 3×3×(-3)=
师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?
生:思考几分钟后,有同学会想出 的
师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)
2、动手实践,共同探索乘方的定义
问题:(1)对折一次有几层? 2
(2)对折二次有几层?
(3)对折三次有几层?
(4)对折四次有几层?
师:一直对折下去,你会发现什么?
生:每一次都是1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;前面的2倍。
师:请同学们猜想:对折20次有几层?怎样去列式?
生:20个2相乘
师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?
简记: ……
师:请同学们总结 对折n次有几层?可以简记为什么?
2×2×2×2……×2
SHAPE MERGEFORMAT
n个2
生:可简记为:
师:猜想: 生:
师:怎样读呢? 生:读作 的 次方
老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同
的因数), 叫做指数(相同因数的个数)。
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
一、教学目标
2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.
二、教学重难点?
有理数乘方的概念及意义,并正确进行有理数乘方的运算
有理数乘方的概念及意义,并正确进行有理数乘方的运算
三、教学策略
本节课采用“启发、动手作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性
四、教学过程
教学进程 教学内容 学生活动 设计意图 引入新知 问题一:
把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.
问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折100次,算式中有几个2相乘?
显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.
问题二:
边长为a的正方形的面积为 ;
棱长为a的正方体的体积为 ;
学生动手作,
观察纸片,发现规律
回忆小学已学知识并完成
学习新知
2个a相加可记为:a+a=2a
3个a相加可记为:a+a+a=3a
4个a相加可记为:a+a+a+a=4a
n个a相加可记为:a+a+a+……+a=na
类比可得:
2个a相乘可记为: EMBED Unknown
3个a相乘可记为: EMBED Unknown
4个a相乘可记为什么呢?
n个a相乘又记为什么呢?
定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成 ,也就是 EMBED Unknown
其中 叫做 的n次方,也叫做 的n次幂. 叫做幂的底数 可以取任何有理数;n叫做幂的指数,可以取任何正整数.
特殊地, 可以看作 的一次幂,也就是说 的指数是1.
例如: 读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为x.
注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.
在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.
例1.填空:
(1) EMBED Unknown 的底数是_____,指数是_____, 它表示______;
(2) 的底数是______,指数是______, 它表示______;
(3) 的底数是______,指数是______, 它表示_______;
例2.计算:
教师
学生口答
学生边记录,边体会、理解
正确表达有理数的乘方
学生口答
分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程
体会类比的数学思想
七年级数学《有理数的乘方》教案设计相关 文章 :
1. 初一数学有理数的乘方教学反思
2. 初一数学有理数的乘方教学视频
3. 初一上册数学《有理数的乘方》练习试题
4. 《有理数的乘法》初一数学教学设计
5. 初一数学有理数的乘方练习题及
6. 七年级数学学习视频:有理数的乘方
7. 初一数学教程视频:有理数的乘方
8. 初一数学《有理数的加减法》教学设计
9. 七年级数学上册有理数的乘方检测题1
10. 新人教版七年级数学下册教案全册
初一数学《整式》教案范文
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。接下来是我为大家整理的初一数学《整式》教案 范文 ,希望大家喜欢!
初一数学《整式》教案范文一
【教学习目标】
一、知识与技能
(1)能用代数式表示实际问题中的数量关系.
(2)理解单项式、单项式的次数 ,系数等概念,会指出单项式的次数和系数.
讲授法、谈话法、讨论法。
【教学重点】
【教学难点】
负系数的确定以及准确确定一个单项式的次数
【课前准备】
教师准备教学用课件。
【教学过程】
一、新课引入
教师作课件,展示章前图案以及字幕,学生观看并思考下列问题:
1.青藏线上,在格尔木到之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:
(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
(2)在西宁到路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1倍,如果通过冻土地段所需要t小时,能用含t的式子表示这段的全长吗?
(3)在格里木到路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通 过冻土地段需要u小时,则这段的全长可以怎样表示?冻土地段与非冻土地段相多少千米?
分析:(1)根据速度、时间和路程 之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).
(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段的全长为120×2.1t+100t(千米).
(3)在格里木到路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相为[100u-120(u-0.5)]千米.
思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师学生分析怎样列式.
上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.
kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.
用含有字母的式子填空,看看列出的式子有什么特点.
(1)边长为a的正方体的表面积为______,体积为_______.
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.
(4)数n的相反数是_______.
教师课堂巡视,关注中下程度的学生,及时,学生探究交流.
上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.
观察上面各式中运算有什么共同特点?
像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数 或一个字母也是单项式.如: -2,a, ,都是单项式,而 ,1+x都不是单项.
单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式 的系数是1或-1时通常省略不写.
初一数学《整式》教案范文二
一. 教学内容:
整式
1. 单项式的有关概念,如何确定单项式的系数和次数;
2. 多项式的有关概念,如何确定多项式的系数和次数;
3. 什么是整式;
4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.
二. 知识要点:
1. 用字母表示数时 ,应注意以下几点:
(1)加、减、乘 、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.
(26、圆)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.
(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作 .
(4)代数式中大于1的分数系数一般写成分数,例如
2. 单项式
(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:
①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式 (x+1) 3不是单项式.
②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.
③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.
(2)单项式 的系数:是指单项式中的数字因数, 如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.
①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5b,有4个字母因数,因此它的次数就是4.
②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.
③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式- 2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.
④单独一个非零数字的次数是零.
3. 多项式
(1)多项式:是指几个单项式的和. 其含义有:
①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,
( 2)多项式的项:是指多项式中的每个单项式. 其中不含字母 的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).
另外,一个多项 式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.
(3)多项式的次数:是指多项式里次数的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2 +1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.
4. 单项式与多项式统称为整式.
三. 重点难点:
1. 重点:单项式和多项式的有关概念.
2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.
【典型例题】
例1. (1)某市对一段全长1500米的道路进行改造. 原每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原的2倍还多35米,那么修这条路实际用了__________天.
(2)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是 ( )
A. a(1+m%)(1-n%)元B. am%(1-n%)元
C. a(1+m%)n%元 D. a(1+m%·n%)元
评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号 省略,如果是除 法写成分数的形式,系数是代分数时写成分数,数字和字母写在括号的前面等)
例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.
单独一个数字是单项式,它的次数是0.
8a3x的系数是8,次数是4;
-1的系数是-1,次数是0.
评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系 ,如果含有加、减、除的关系,那么它就不是单项式.
例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计 )和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.
分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.
解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab +ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.
评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.
故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.
解:2
评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数的项的次数决定的.
例5. 把代数式2a2c3和a3x2的共同点填写在下 列横线上.
例如:都是整式.
(1)都是___ _________________;
(2)都是____________________.
分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.
解:(1)五次式;(2)都含有字母a.
评析:主要观察单项式的特征.
例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.
初一数学《整式》教案范文三
一、内容及其分析
1、教学内容:整式的有关概念,即能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
2、内容分析:本节课要学的内容整式的有关概念指的是理解并掌握整式的有关概念,能够对一些整式进行分析,其核心是整式的有关概念,理解它关键就是要能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.。学生已经学过有理数的运算,本节课的内容整式的有关概念就是在此基础上的发展。由于它还与根式的运算有直接的联系,所以在本学科有重要的地位,并有不可忽视的作用,是本学科的核心内容。教学的重点是单项式的系数、次数,多项式的项数、次数等概念.解决重点的关键是通过对问题的解决使学生对单项式有个初步的理解,并归纳 总结 出单项式的次数和系数等概念.
二、目标及其解析
1、目标定位:理解并掌握整式的有关概念,能够对一些整式进行分析;
2、目标解析:理解并掌握整式的有关概念,就是指能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
三、问题诊断与分析
在本节课的教学中,学生可能遇到的问题是多项式的项数、次数等概念难以理解,产生这一问题的原因是单项式的项数、次数的影响。要解决这一问题,就要先分清单项式与多项式的区别,其中关键是能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
四、教学支持条件分析
五、教学过程设计:
(一).创设问题情境,激发学生兴趣,引出本节内容
问题1:填空,观察所填式子的特点:
(1)边长为x的长方形的周长是__________;
(2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(3)若正方体的的边长是a,则它的表面积是_______,体积是________;
(4)设n是一个数,则它的相反数是________.
设计意图:通过此问题让学生知道可以用字母表示数,从实际问题中列出式子,体会数学来源于生活,从而体会整式的实际意义。
师生活动:
1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念.所填式子是4x、vt、6a2、a3、-n,特点是都是数字或字母的乘积.
2.、学生在观察的基础上归纳单项式的定义:
单项式:由数字或字母乘积组成的式子是单项式.
分析式子4x、vt、6a2、a3、-n得出:
单项式中的数字因数叫作单项式的系数(4x、vt、6a2、a3、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、6a2、a3、-n的次数分别是1、2、2、3、1).
例1: 用单项式填空,并指出它们的系数和次数:
(2)底边长为a,高为h的三角形的面积是_________;
(3)一个长方体的长、宽都是a,高是h,它的体积是________;
(4)一台电视机原价是a元,现按原价的9折出售,那么这台电视机现在的售价为______元;
(5)一个长方形的长是0.9,宽是a,这个长方形的面积是_________.
解:(1)12n,它的系数为12,次数是1;
(3) ,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1.
问题2:根据对单项式的理解,解决下列问题. 小明房间的窗户如图(1)所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).
图(1)装饰物所占的面积是______.
(2)某校学生总数为x,其中男生人数占总数的 ,男生人数为 ;
(3)一个长方体的底面是边长为a的正方形,高是h,体积是 .
设计意图:通过上面单项式的了解让学生再一次在实际问题中列出式子,对比看是不是与单项式相似,加深对概念的理解。
师生活动:
1、学生思考,分析第(1)个问题中装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为 ,所以装饰物所占的面积恰好是半径为 的一个圆的面积即 ;(2)中男生人数为 x;(3)中这个长方体的体积是a2h.
2、学生在解决问题后,分析各个单项式的系数和次数,并进行交流,在交上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.流中纠正一些不正确的想法.
(二)问题引申、探索多项式的有关概念
问题3:
填空,然后分析所填式子的特点:
1、温度由t°C下降5°C后是________°C;
2、买一个 篮球 需要x元,买一个 排球 需要y元,买一个 足球 需要z元,买3个篮球、5个排球、2个足球共需要________元;
3、如图(2),三角尺的面积是________;
图(2) 图(3)
如图(3)是一所住宅的建筑面积的平面图,这所住宅的建筑面积是_______平方米.
设计意图:通过学生自己列式体会式子形成的过程,使之与单项式产生对比,加深对多项式的理解。
师生活动:
2、学生在观察的基础上归纳多项式的定义及相关概念.
3、多项式:几个单项式的和叫作多项式.
在多项式中每一个单项式叫作多项式的项,其中不字母的项叫作常数项,多项式里次数的项的次数叫作这个多项式的次数.
单项式和多项式统称为整式.
让学生分析上述多项式中的项、次数等.
t-5的项是t和-5,次数是1;3x+5y+2z的项是3x、5y、2z,次数是1次; 的项是 和 ,次数是2; 项是x2、2x、38,次数是2.
同时让学生辨别多项式是单项式的和,因此多项式的项包含它前面的符号比如多项式3x-4y的第二项是-4y,而不是4y.
例2: 用多项式填空,并指出它们的项和次数:
(1)温度由t°C下降5°C后是____________;
(2)甲数x的 与乙数y的 的可以表示为____________;
(3)如下图,圆环的面积为____________.
解:(1)t-5,它的项是5和-5,次数是1;
(2) ,它的项是 ,次数是1;
(3) ,它的项是 ,次数是2.
实际应用:
例3:一条河流的水流速为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙 两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中顺水行驶和逆水行驶的速度分别是多少?
初一数学《整式》教案范文相关 文章 :
1. 初中七年级上册数学《整式》教案优质范文五篇
2. 七年级上册数学《整式的加减》教案精选范文五篇
3. 初一数学上册《整式》教学设计
4. 初一数学整式练习题及
5. 初一数学复习知识:整式加减
6. 初一数学教程视频:整式
7. 初一上册数学整式提高训练
8. 七年级上册数学整式的加减教案
9. 初一数学整式手抄报
初中数学哪个老师的教学视频
本章是在第二学段对统计初步认识的基础上,对数据的收集与表示的进一步学习,它是统计学中对数据的收集、整理、表示、分析的起始。本章主要是研究数据的收集、整理和简单的统计图,它们不仅是以后学习数据的分析和应用的基础,而且对培养和发展学生的数感和统计意识,都有着重要的意义。初中数学王宇亮、张江老师的教学视频。
1、王宇亮:10多年数学教学经验,原来是新东方教师培训师。会在教学当中让学生发散数学思维,掌握多种解法思路,并且会对知识进行大量的技巧总结,经常和学生进行线上互动。是很不错的一位老师。王宇亮老师是北大附邀教师,现在是高途初中数学学科负责人。
2、张江:讲课比较的细致,对于知识点讲解清晰,既有简单也有拔高部分,可以作为中考的全程课程。张江老师因在中考及统考中教学成绩显著,2003年被评为县级教师,同时在2004年获得省级指导教师奖。
2005年被评为市级班主任,2006年被评为市级教师,2007年荣获希望杯数学竞赛辅导员。在2010年所带毕业班中考中所带班级中刘禅、于洋等多位同学考入市重点中学。所以张江的课会讲得很好。
数学的学习是在每个阶段都是很重要的,不仅是逻辑思维的体现,更是重点院校的考核科目。初中数学的学习基础是小学数学,因此,如果学生在小学数学上没有好好学习,在1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解多项式的概念.所填式子是t-5、3x+5y+2z、 、 ,特点是都可以看做是单项式的和组成的式子.初中阶段就会倍感吃力。
因此,在初中数学学习之前,学生应该把小学阶段会考到的知识点全部梳理一遍,从知识点的透彻理解开始,逐渐练习总结,以便打好坚实的数学基础。
初中学习注意事项:
1、积极参加课堂讨论
数学是一门应用性很强的学科,需要学生在讲授过程中积极思考、提问、讨论。课堂是学生认识数学本质的重要时间段,需要学生积极参与其中,提出自己的想法和对老师讲授内容的疑问,加深对数学概念和规律的理解,更好地把握数学知识的精髓。
2、学习阶段性总结
在数学学习过程中,学生应当养成尝试总结、复习新学知识和掌握优化方法的习惯。及时将学习成果反思总结,及时解决学习中出现的问题,从而逐步提高数学学习的效率。
初一数学《从算式到方程》教案范文大全
问题(1)冬季里某天的温度为-3~3 ,它的确切含义是什么?这一天的温是多少?方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的 方法 十分重要。接下来是我为大家整理的初一数学《从算式到方程》教案 范文 大全,希望大家喜欢!
师生活动:鉴于上面的分析讨论,在教师的下,让学生试着归纳具有相反意义的量的表示:初一数学《从算式到方程》教案范文大全一
【教学习目标】
一、知识与技能
1、通过处理 实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
二、过程与方法
通过实际问题,感受数学与生活的联系。
三、情感态度与价值观
培养学生热爱数学热爱生活的乐观人生态度。
【 教学方法 】
探索式教学法
教师准备教学用课件。
【教学过程】
一、新课引入
教师提出教科书第79页的问题,同时出现下图:
问题2:你会用算术方法求出王家庄到翠湖的距离吗?
问题3:能否用方程的知识来解决这个问题呢?
可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的 基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式 :
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?
问题3:根据车速相等,你能列出方程吗?
教师学生设未知数,并用含未知数的字母表示有关的数量
教师学生寻找相等关系,列出方程.
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
可列方程:
给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
含有未知数的等式叫方程.
归纳列方程解决实际问题的两个步骤:
初一数学《从算式到方程》教案范文大全二
教学目标:
1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.
2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.
3.培养学生获取信息、分析问题、处理问题的能力.
教学重难点: 从实际问题中寻找相等关系.
教学过程:
一、情境引入
提出课本P78的问题,可用多媒体演示题目描述的行驶情境.
1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?
2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.
3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?
二、学习新知
路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 70
2.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.
3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.
5.将题中的已知量和未知量用表格列出:
路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-1
6.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.
7. 总结 以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.
8.比较列算式和列方程两种方法的特点:阅读课本P79.
9.举一反三:分别列算式和设未知数列方程解决下列问题:
(1)某数与它的的和是8,求这个数;
(2)班上有女生32人,比男生多,求男生人数;
(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?
三、初步应用
1.例1:课本P79例1.
例2(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;
(2)27与x的的一半等于x的4倍.
列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.
2.练习(补充)
(1)列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
①12与x的等于x的2倍;
②x的三分之一与5的和等于6.
四、课时小结
2.你有什么收获?
五、课堂作业
小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.
第2课时一元一次方程
教学目标:
1.理解一元一次方程、方程的解等概念.
2.掌握检验某个值是不是方程的解的方法.
3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.
4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.
教学重点:寻找相等关系,列出方程.
教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.
教学过程:
一、情境引入
问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?
如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)
由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.
二、自主尝试
1.尝试:让学生尝试解答课本P79的例1.
2.交流:
在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.
3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.
4.讨论:
问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?
问题2:在第(3)题中,你还能设其它的未知数为x吗?
5.建立概念
(1)概念的建立:
在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.
“一元”:一个未知数;“一次”:未知数的指数是一次.
判断下列方程是不是一元一次方程:
①23-x=-7;②2a-b=3;
初一数学《从算式到方程》教案范文大全三
教学目标 1.了解方程、一元一次方程、方程的解、解方程等概念;
2.掌握等式的性质,能对等式进行变形。
3.利用等式的性质解简单的一元一次方程。
教学重难点 重点:1.一方一次方程。2.利用方程解的定义求待定字母的值。3.等式的性质。
难点:1.利用等式的性质解简单的一元一次方程。2.列方程。 课后记 教学完成情况 □正常完成 □提前完成 □未完成 学生接受程度 □完全接受 □部分接受 □完全不能接受 学生课堂表现 □很积极 □比较积极 □一般 上次作业完成 □完成 □未完成 (完成质量: 分/5分制) 上次笔记整理 □完成 □未完成 (完成质量: 分/5分制) 教学反思 教案设计
(内容包含知识点、典型例题、课堂练习、课后作业和设计意图) 一、方程的有关概念
1.方程
含有未知数的等式叫做方程。例如 等。
理解要注意以下2点
方程必是等式,并且必须含有未知数。方程是表示已知数与未知数以及它们的相等关系式的等式,所含未知数不一定是一个,如 中, , 都是未知数。
与代数式的区别和联系:代数式不是方程(代数式中不含等于号),方程左右两边都是代数式。
2.方程的解
使方程中等号左右两边相等的未知数的值,叫做方程的解。
方程中若只含一个未知数,此时方程的解也叫方程的根。例如方程 左边= ,所以 是方程 的解,或说 是方程的根。
3.解方程
求出使方程中等号左、右两边相等的未知数的值叫做解方程。
解方程与方程的解的却别:
(1)解方程是确定方程的解的过程,是同解变形过程,在这里,解是动词。
(2)方程的解是求得的结果,它是未知数的数值,它能使方程中等号左、右两边的值相等,它是由未知数和已知数之间的相等关系确定的,方程的解中的解是名词。
例1:请指出下列哪些式子是方程
练习:1.下列各式中, 是等式; 是方程
例2:检验下列各题括号里的未知数的值,判断它们是不是前面方程的解。
(1)
(2)
(3)
练习:2. 是下列哪个方程的解( )
A. B. C. D.
3.一元一次方程 的解是( )
A. B. C. D.
二、一元一次方程
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
最简形式 ,标准形式
例如 等都是一元一次方程。
要判断一个方程是不是一元一次方程,需要满足三个条件①只含有一个未知数;②未知数的次数是1;③整式方程。三点缺一不可。
例3:下列方程是一元一次方程的是( )
A. B. C. D.
例4:若 是关于 的一元一次方程,则 的值是( )
A.1 B.任意数 C.2 D.1或2
练习:4.若关于 的方程 是一元一次方程,求 的值
三、等式的性质
1.等式的性质1
等式两边加(或减)同一个数(或式子),结果仍相等。即如果 .
2.等式的性质2
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。即如果 ,那么 ;如果 .
例5:用适当的数或式子填空,使所得的结果仍是等式,并指出是根据等式的哪一条性质以及怎样变形的。
初一数学《从算式到方程》教案范文大全相关 文章 :
1. 初中七年级上册数学《从算式到方程》教案五篇
2. 初一数学从算式到方程教学视频
3. 初一数学《正数和负数》教案大全
4. 初一语文《黄河颂》教案范文大全
5. 初一语文《河中石兽》教案大全范文
6. 初一数学从算式到方程习题及
7. 初一上册数学从算式到方程试题(2)
8. 初一上册数学从算式到方程试题
9. 2017年七年级上数学教学范文
10. 七年级班级工作指导思想
请问谁有初中的数学名师教学视频
(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:你好,所谓的名师这些头衔都是虚的,他们讲的一些东西其实并不适合真实教学。
还是建议找自己的老师辅导效果会比较好。
(百度传3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页课网上有相关的初中数学的教学视频,可以搜索去看看)
七年级数学正数和负数教案
《正数与负数》这一模块的主要知识点是认识下数和负数,知道在什么情况下用正数和负数来表示。接下来是我为大家整理的 七年级数学 正数和负数教案,希望大家喜欢!
七年级数学正数和负数教案一
教案背景
初中生爱玩、好动,处于形象思维向 抽象思维 过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。
1.1《正数和负数》教学设计方案
(第1课时)
人教版 九年级数学 上册
山东省滨州市滨城区滨北街道办事处北城中学 耿新华
邮编:256651 联系电话:15865403584
教材分析:师:如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映)如何算24?
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册章节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。
二、教学目标
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与 方法 :1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点
重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法 :采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念
教学过程
教师在轻松欢快的音乐中演示节首为主体的多媒体课件。
环节 教师活动 学生活动 设计意图
创设情境导入新课
自主学习
师生互动
合作探究
达标检测
学习 总结
教师出示说明自然数的产生、分数的产生.接着
出示问题
问题1 天气预报:滨州市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温是多少?
问题2 2.2010年我国花生产量比去年增长1.8%油菜产量比去年增长-2.7%,这里的增长-2.7%代表什么意思?
两个问题中的-3、-2.7%是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课
一、出示本节课的学习目标
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
3、会判断一个数是正数?还是负数?
4、能用正数、负数表示实际生活中具有相反意义的量
二、出示本节课的自学提纲
1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫 ,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫 。如-6, ,…。“-6”读作 。
2、知识点2:对“0”的理解--------阅读教材第2 页
0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示 其它 特定的意义。
相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。
一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。
二、教师收集全班不会的问题,帮着解决。
做一做:(出示幻灯片)
七年级数学正数和负数教案二
1.1《正数和负数》教学设计方案
(第1课时)
教材分析:
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册章节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。
二、教学目标
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点
重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念
教学过程
教师演示节首为主体的多媒体课件。
环节 教师活动 学生活动 设计意图
创设情境导入新课
自主学习
师生互动
合作探究
达标检测
学习总结
教师出示说明自然数的产生、分数的产生.接着
出示问题
问题1 天气预报:市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温是多少?
问题2 有三个队参加的 足球 比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?
问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的 0.5代表什么意思?合格产品的长度范围是多少 ?
三个问题中的-3、 0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课
一、出示本节课的学习目标
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
3、会判断一个数是正数?还是负数?
4、能用正数、负数表示实际生活中具有相反意义的量
二、出示本节课的自学提纲
1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、这样比0大的数叫 ,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-0.5这样在正数前面加上“—”号的数叫 。如-6, ,…。“-6”读作 。
2、知识点2:对“0”的理解--------阅读教材第2 页
0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。
相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。
一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。
二、教师收集全班不会的问题,帮着解决。
做一做:(出示幻灯片)
一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值
七年级数学正数和负数教案三
【教学目标】
知识与技能:
使学生了解正数与负数是从实际需要中产生的。
过程与方法:
在经历从具体例子引入负数的过程中,使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量,理解0所表示的意义。
情感与态度:
在负数概念形成的过程中,培养学生的观察、归纳和概括能力,激发学生学好数学的热情。
【学情分析 】
1.了解负数产生的背景(数的产生和发展离不开生活和生产的需要),体会负数在生产和生活中运用的重要性。 2.学生经历负数引入的过程:生产和生活中的例子(具有互为相反意义的量)——数不够用——负数的引入——数学符号的表示——问题的解决等过程,初步培养学生数学符号感,了解数学符号在数学学习中的地位和作用。培养学生在与人合作交流的过程中,主动探究问题本质,善于观察、归纳、概括以及发现解决问题的方法的能力。
【重点难点】
正确认识正数和负数,理解0所表示的量的意义。
【教学过程】
教学活动
活动1【导入】导入
复习回顾,做好衔接 同学们已经有了六年学习数学的 经验 ,数对每一位同学来说并不陌生,相信同学们已经认识到数的产生和发展离不开生产和生活的需要。首先让我们来回顾: 自然数的产生、分数的产生。 演示课件,展示,直观说明数的产生和扩充:(出示说明自然数的产生、分数的产生。让学生理解数的符号的产生的好处) 师生活动(学生观察,试着解释意义):我们知道,为了表示物体的个数(如原始打猎计数)或事物的顺序,产生了1,2,3,...;为了表示“没有”(比如猎物分完),引入了数0;有时分配、测量(丈量土地)的结果不是整数,需要用分数(小数)表示. 总之,数是为了满足生产和生活的需要而产生发展起来的.
设计意图:数的产生和发展离不开生活和生产的需要。
活动2【导入】活动2
演示课件,展示问题及相应的。
问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?
问题(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里增长-2.7%代表什么意思?
师生活动:教师演示课件并对问题背景做些说明:
例如在净胜球的问题中,先介绍确定足球比赛排名顺序的规定:
两队积分不相同,积分高的队排名在前;
两队积分阅读与思考 长度的测量相同,净胜球多的队排名在前;
两队积分、净胜球都相同,进球多的队排名在前。
其次介绍积分计算规则:胜一场得3分,平一场得1分,输一场得0分。由此易知这三个队的积分均为3+0=3。
介绍净胜球的计算规则:红队胜黄队(4:1)表示红队进4球,失1球或者黄队进1球,失4球,净胜球就是比赛中多进了几个球。这里进球和失球是互为相反意义的量。我们规定:进球用“+”,失球用“-”表示,这样进球数和失球数可分别在进球数和失球数前面添上“+”或“-”来表示。净胜球就是在比赛中进球与失球之和。比如以红队为例,进球为4,失球为2(两场比赛各失一球)记为-2,所以红队净胜球为4+(-2)=2.类似地可算出黄队净胜球-2(进球比失球少2个球,相当于净失球2个,所以记为-2),蓝队净胜球是0.
在教师的指导下,学生思考-3 ~3 、净胜球与排名的顺序、增长-2.7%的意义以及在解决这些问题时必须要对这些新数进行四则运算等问题。
设计意图:通过温度的例子——出现新数-3还涉及到有理数的减法;净胜球的例子,也出现了负数,确定净胜球涉及有理数的加法,确定排名顺序涉及有理数的大小的比较;在产量增长率的例子中,运用正负数描述朝指定方向变化的情况等问题,引出用各种符号表示数,让学生试着解释,激发他们的求知欲,同时对问题进行说明,找出它们的共性,揭示问题的实质(具有相反意义的量)。
具有相反意义的量的表示
比如温度的问题,零上与零下(是以零为分界点)是具有相反意义的量,我们规定零上为正,则零下为负;净胜球的例子,进球与失球(对方进球)也是具有相反意义的量,我们规定进球为正,则失球为负…… 一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在其前面写上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在其前面写上一个“-”(读作“负”)来表示(零除外)
设计意图:由实例归纳具有相反意义的量的表示方法,培养学生合作交流意识及从特殊到一般认识问题本质的能力。
七年级数学正数和负数教案四
〔教学目标〕
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
〔重点难点〕本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天的温是多少?
七年级数学正数和负数教案相关 文章 :
1. 初一上册数学《正数和负数》教案范文五篇
2. 初一数学正数和负数教学视频
3. 七年级数学学习视频:正数和负数
4. 七年级数学上册教案
5. 七年级数学上教学设计2017
6. 七年级数学教案沪科
7. 初一数学教程视频:正数和负数
8. 七年级数学上册第1、2章教案
9. 人教版六年级下册《负数》教案范文5篇
10. 北师大初中七年级上册数学教案
初中数学都学什么?
七年级数学《有理数的乘方》教案设计四问题一:初中数学主要学什么 学习与强化代数,延伸到一元二次方程和一些简单的函数
学生活动:请同学们拿出一张纸进行对折,再对折图形方面的话,三角形、四边形、圆形的判定、性质和利用
数形结合的有坐标系
还有杂项比如统计和概率之类
问题二:初中数学都讲哪些知识 初中数学都讲哪些知识
七年级上册
1.3 有理数的加减法
实验与探究 填幻方
阅读与思考 人使用负数
1.4 有理数的乘除法
观察与思考 翻牌游戏中的数学道理
1.5 有理数的乘方
数学活动
小结
复习题1
第二章 整式的加减
2.1 整式
阅读与思考 数字1与字母X的对话
2.2 整式的加减
信息技术应用 电子表格与数据计算
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
阅读与思考 “方程”史话
3.2 解一元一次方程(一)――合并同类项与移项
实验与探究 无限循环小数化分数
3.3 解一元一次方程(二)――去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
阅读与思考 几何学的起源
4.2 直线、射线、线段
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒
数学活动
小结
复习题4
部分中英文词汇索引
七年级下册
第五章 相交线与平行线
5.1 相交线
5.1.2 垂线
5.1.3 同位角、内错角、同旁内角
观察与猜想
5.2 平行线及其判定
5.2.1 平行线
5.3 平行线的性质
5.3.1 平行线的性质
5.3.2 命题、定理
5.4 平移
教学活动
小结
第六章 平面直角坐标系
6.1 平面直角坐标系
6.2 坐标方法的简单应用
阅读与思考
6.2 坐标方法的简单应用
教学活动
小结
第七章 三角形
7.1 与三角形有关的线段
7.1.2 三角形的高、中线与角平分线
7.1.3 三角形的稳定性
信息技术应用
7.2 与三角形有关的角
7.2.2 三角形的外角
阅读与思考
7.3 多变形及其内角和
阅读与思考
7.4 课题学习 镶嵌
教学活动
小结
第八章 二元一次方程组
8.1 二元一次方程组
8.2 消元――二元一次方程组的解法
8.3 实际问题与二元一次方程组
阅读与思考
8.4 三元一次方程组解法举例
教学活动
小结
第九章 不等式与不等式组
9.1 不等式
阅读与思考
9.2 实际问题与一元一次不等式
实验与探究
9.3 一元一次不等式组
阅读与思考
教学活动
小结
第十章 数据的收集、整理与描述
10.1 统计调查
实验与探究
10.2 直方图
10.3 课题学习从数据谈节水
教学活动
小结
部分中英文词汇索引
八年级上册
第十一章 一次函数
11.1 变量与函数
信息技术应用 用计算机画函数图象
11.2 一次函数
阅读与思考 科学家如何测算地球的年龄
11.3 用函数观点看方程(组)与不等式
数学活动
小结
复习题11
第十二章 数据的描述
12.1 几种常见的统计图表
12.2 用图表描述数据
信息技术应用 利用计算机画统计图
阅读与思考 作者......>>
问题三:初中数学都学哪些内容 代数部分:
1、有理数、无理数、实数
2、整式、分式、二次根式
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式
4、函数(一次函数、二次函数、反比例函数)
5、统计初步
几何部分
1、线段、角
2、相交线、平行线
3、三角形
4、四边形
5、相似形
问题四:初中数学主要掌握哪些初一学什么初二学什么初三学什么 从哪开始学?有个顺序 比如先学什么为后面的什么 初中数学主要包括几大块的内容2:
1、数。指从自然数到实数的拓展,主要在初一学习,其中上册开篇就学有理数,下册学了无理数;
2、式,即代数式。初一上会学整式,初二下会学分式,初三学二次根式;当然关于代数式的运算,如因式分解(在初二上)也应该归入这一部分内容;
3、方程与不等式。初一上册学一元一次方程、下册学二元一次方程和一次不等式(组);初二学习分式方程;初三学习一元二次方成程;
4、函数。初二学习一次函数、初二学习反比例函数,初三学习二次函数。
5、几何。初一上几何基础知识,初二学习三角形全等三角形,特殊三角形,平行四边形,初三学习圆。
6、统计与概率等。也是分散在各年级分开学的。比如条形图扇形图、方、中位数众数,概率在初二、初三学。
问题五:初中数学要学什么? 就算你是想自学,要了解初中数学教什么,是买好初一到初三的数学课本,看书本可知学到60%,剩下的考做题来巩固。另外,并不你自学,好好跟着老师步骤走,合理安排各科学习时间,各科成绩平衡更有利于升高中
问题六:想要自学初中数学 请问先学啥 后学啥? 恩,按我自己的经验,初中数学先学数――有理数,无理数,实数,负数,相反数等,
接着是式,数与式,二次根式也就是幂,三次根式等,然后有数与式的加减乘除,分解因式,不等式啥的。。。。
然后大概是一次函数,全等三角形的概念和证明,等。。。初一貌似是这些吧。。。。。。
可以先把这些学一下,恩,如果要继续深入学习的话,可以去看一些初中数学的教学视频。
希望以上对你有帮助
问题七:初二数学主要是学什么? 代数.(2次根式是重点)
几何(学三角形.和多边星.主要在平行四边形上)
函数(初二上有一次函数.初三上有反比例函数和穿.次函数.应该会提前上)
统计.概率(这个很简单.只要上课认真会做)
解方程(想学好2元1次方程.代数是基础)
大概就这些了.
祝你能有好成绩
不能没有你歌曲_不能没有你歌曲原唱刘德华
有首歌的是 安迪。我不能没有你。名字叫什么? 穿军装的女孩 王杰--安妮 不能没有你歌曲_不能没有你歌曲原唱刘德华 不能没有你歌曲_不能没有你歌曲原唱刘德华 所有的真情 词:陈乐融曲:王杰···
上海国金百丽宫影院 百丽宫影城国金中心店
想知道: 泉城路附近哪有电影院 下面的是其他新影联院线的,想去哪个电影院看,详细的查查就行了 地址:山东省济南市历下区泉城路339号沃尔玛超市4楼(近趵突泉北路) 上海国金百丽宫影院 百丽···
resident是什么意思_resident是什么意思英语
period resident at this address 什么意思 邪恶之源 period resident是什么意思_resident是什么意思英语 resident是什么意思_resident是什么意思英语 候鸟是一种随季节不同周期性进行迁徙的鸟类。 resident 有些鸟可···